Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2321410121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748575

RESUMEN

Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.


Asunto(s)
Prosencéfalo Basal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neuronas GABAérgicas , Vigilia , Animales , Masculino , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones Transgénicos , Sueño/fisiología , Vigilia/fisiología
2.
J Neurophysiol ; 123(1): 22-33, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747354

RESUMEN

The type 5 metabotropic glutamate receptor (mGluR5) represents a novel therapeutic target for schizophrenia and other disorders. Schizophrenia is associated with progressive abnormalities in cortical oscillatory processes including reduced spindles (8-15 Hz) during sleep and increased delta (0.5-4 Hz)- and gamma-band activity (30-80 Hz) during wakefulness. mGluR5 knockout (KO) mice demonstrate many schizophrenia-like behaviors, including abnormal sleep. To examine the effects of mGluR5 on the maintenance of the neocortical circuitry responsible for such neural oscillations, we analyzed sleep/wake electroencephalographic (EEG) activity of mGluR5 KO mice at baseline, after 6 h of sleep deprivation, and during a visual method of cortical entrainment (visual steady state response). We hypothesized mGluR5-KO mice would exhibit translationally relevant abnormalities in sleep and neural oscillations that mimic schizophrenia. Power spectral and spindle density analyses were performed across 24-h EEG recordings in mGluR5-KO mice and wild-type (WT) controls. Novel findings in mGluR5 KO mice include deficits in sleep spindle density, wake alpha power, and 40-Hz visual task-evoked gamma power and phase locking. Sigma power (10-15 Hz), an approximation of spindle activity, was also reduced during non-rapid eye movement sleep transitions. Our observations on abnormal sleep/wake are generally in agreement with previous reports, although we did not replicate changes in rapid eye movement sleep. The timing of these phenotypes may suggest an impaired circadian process in mGluR5 KO mice. In conclusion, EEG phenotypes in mGluR5 KO mice resemble deficits observed in patients with schizophrenia. These findings implicate mGluR5-mediated pathways in several translationally relevant phenotypes associated with schizophrenia, and suggest that agents targeting this receptor may have harmful consequences on sleep health and daily patterns of EEG power.NEW & NOTEWORTHY Metabotropic glutamate receptor type 5 (mGluR5) knockout (KO) mice show several translationally relevant abnormalities in neural oscillatory activity associated with schizophrenia. These include deficits in sleep spindle density, sigma and alpha power, and 40-Hz task-evoked gamma power. The timing of these phenotypes suggests an impaired circadian process in these mice. Previously reported rapid eye movement sleep deficits in this model were not observed. These findings suggest mGluR5-enhancing drugs may improve sleep stability and sleep spindle density, which could impact memory and cognition.


Asunto(s)
Ondas Encefálicas/fisiología , Ritmo Circadiano/fisiología , Potenciales Evocados Visuales/fisiología , Receptor del Glutamato Metabotropico 5 , Esquizofrenia/fisiopatología , Privación de Sueño/fisiopatología , Fases del Sueño/fisiología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Polisomnografía , Vigilia/fisiología
3.
Physiol Rev ; 92(3): 1087-187, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22811426

RESUMEN

This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.


Asunto(s)
Encéfalo/fisiopatología , Trastornos del Sueño-Vigilia/fisiopatología , Sueño , Vigilia , Animales , Atención , Encéfalo/metabolismo , Ondas Encefálicas , Cognición , Emociones , Predisposición Genética a la Enfermedad , Genómica , Humanos , Memoria , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/fisiopatología , Fenotipo , Proteómica , Transducción de Señal , Sueño/genética , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/psicología , Trastornos del Sueño-Vigilia/terapia , Sueño REM , Vigilia/genética
4.
Proc Natl Acad Sci U S A ; 112(11): 3535-40, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733878

RESUMEN

Cortical gamma band oscillations (GBO, 30-80 Hz, typically ∼40 Hz) are involved in higher cognitive functions such as feature binding, attention, and working memory. GBO abnormalities are a feature of several neuropsychiatric disorders associated with dysfunction of cortical fast-spiking interneurons containing the calcium-binding protein parvalbumin (PV). GBO vary according to the state of arousal, are modulated by attention, and are correlated with conscious awareness. However, the subcortical cell types underlying the state-dependent control of GBO are not well understood. Here we tested the role of one cell type in the wakefulness-promoting basal forebrain (BF) region, cortically projecting GABAergic neurons containing PV, whose virally transduced fibers we found apposed cortical PV interneurons involved in generating GBO. Optogenetic stimulation of BF PV neurons in mice preferentially increased cortical GBO power by entraining a cortical oscillator with a resonant frequency of ∼40 Hz, as revealed by analysis of both rhythmic and nonrhythmic BF PV stimulation. Selective saporin lesions of BF cholinergic neurons did not alter the enhancement of cortical GBO power induced by BF PV stimulation. Importantly, bilateral optogenetic inhibition of BF PV neurons decreased the power of the 40-Hz auditory steady-state response, a read-out of the ability of the cortex to generate GBO used in clinical studies. Our results are surprising and novel in indicating that this presumptively inhibitory BF PV input controls cortical GBO, likely by synchronizing the activity of cortical PV interneurons. BF PV neurons may represent a previously unidentified therapeutic target to treat disorders involving abnormal GBO, such as schizophrenia.


Asunto(s)
Prosencéfalo Basal/fisiología , Ritmo Gamma/fisiología , Neuronas/fisiología , Parvalbúminas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Neuronas Colinérgicas/fisiología , Potenciales Evocados Auditivos/fisiología , Proteínas Luminiscentes/metabolismo , Ratones , Optogenética , Reproducibilidad de los Resultados , Transducción Genética
5.
J Neurosci ; 36(6): 2057-67, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865627

RESUMEN

Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT: Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior.


Asunto(s)
Neuronas Colinérgicas/fisiología , Prosencéfalo/fisiología , Vigilia/fisiología , Acetilcolina/metabolismo , Animales , Antagonistas Colinérgicos/administración & dosificación , Antagonistas Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Electroencefalografía , Electromiografía , Femenino , Masculino , Ratones , Microdiálisis , Optogenética , Parvalbúminas/metabolismo , Estimulación Luminosa , Prosencéfalo/efectos de los fármacos , Fases del Sueño/fisiología , Vigilia/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
6.
J Neurophysiol ; 117(1): 327-335, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27784808

RESUMEN

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY: Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.


Asunto(s)
Adenosina/metabolismo , Homeostasis/fisiología , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Sueño/fisiología , Adenosina/farmacología , Factores de Edad , Envejecimiento/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Electroencefalografía , Electromiografía , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Homeostasis/efectos de los fármacos , Área Preóptica/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Privación de Sueño/fisiopatología , Vigilia
7.
Brain Behav Immun ; 62: 137-150, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28109896

RESUMEN

Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1ß) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1ß into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1ß, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1ß-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1ß. NLRP3, ASC, and IL1ß mRNA, IL-1ß protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Inflamasomas/genética , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Polisomnografía , Transducción de Señal/fisiología , Privación de Sueño/genética , Vigilia/fisiología
8.
J Sleep Res ; 26(3): 377-385, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28397310

RESUMEN

Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders.


Asunto(s)
Creatina/farmacología , Homeostasis/efectos de los fármacos , Sueño/efectos de los fármacos , Sueño/fisiología , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Creatina/administración & dosificación , Electroencefalografía , Metabolismo Energético/efectos de los fármacos , Masculino , Microdiálisis , Fosfocreatina/metabolismo , Ratas , Ratas Sprague-Dawley , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo , Sueño REM/efectos de los fármacos , Sueño REM/fisiología
9.
J Neurosci ; 34(8): 2832-44, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553925

RESUMEN

The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP(+)) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 µm diameter) BF GFP(+) and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically projecting GABAergic/PV neurons.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Sistema Nervioso Parasimpático/fisiología , Prosencéfalo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Modificados Genéticamente , Carbacol/farmacología , Corteza Cerebral/citología , Colina O-Acetiltransferasa/metabolismo , Glutamato Descarboxilasa/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/fisiología , Inmunohistoquímica , Canales Iónicos/efectos de los fármacos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Agonistas Muscarínicos/farmacología , Sistema Nervioso Parasimpático/citología , Parvalbúminas/genética , Técnicas de Placa-Clamp , Prosencéfalo/citología , Receptores Muscarínicos/efectos de los fármacos
10.
Eur J Neurosci ; 41(2): 182-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25369989

RESUMEN

The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP.


Asunto(s)
Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Homeostasis/fisiología , Sueño/fisiología , Adenosina/metabolismo , Animales , Anticuerpos Monoclonales , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/fisiopatología , Neuronas Colinérgicas/efectos de los fármacos , Ritmo Delta/efectos de los fármacos , Ritmo Delta/fisiología , Homeostasis/efectos de los fármacos , Ácido Láctico/metabolismo , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Nitritos/metabolismo , Compuestos Nitrosos/farmacología , Ácido Pirúvico/metabolismo , Ratas Wistar , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saporinas , Sueño/efectos de los fármacos , Privación de Sueño/fisiopatología , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología
11.
Sleep Adv ; 5(1): zpae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638581

RESUMEN

Sleep-wake scoring is a time-consuming, tedious but essential component of clinical and preclinical sleep research. Sleep scoring is even more laborious and challenging in rodents due to the smaller EEG amplitude differences between states and the rapid state transitions which necessitate scoring in shorter epochs. Although many automated rodent sleep scoring methods exist, they do not perform as well when scoring new datasets, especially those which involve changes in the EEG/EMG profile. Thus, manual scoring by expert scorers remains the gold standard. Here we take a different approach to this problem by using a neural network to accelerate the scoring of expert scorers. Sleep-Deep-Learner creates a bespoke deep convolution neural network model for individual electroencephalographic or local-field-potential (LFP) records via transfer learning of GoogLeNet, by learning from a small subset of manual scores of each EEG/LFP record as provided by the end-user. Sleep-Deep-Learner then automates scoring of the remainder of the EEG/LFP record. A novel REM sleep scoring correction procedure further enhanced accuracy. Sleep-Deep-Learner reliably scores EEG and LFP data and retains sleep-wake architecture in wild-type mice, in sleep induced by the hypnotic zolpidem, in a mouse model of Alzheimer's disease and in a genetic knock-down study, when compared to manual scoring. Sleep-Deep-Learner reduced manual scoring time to 1/12. Since Sleep-Deep-Learner uses transfer learning on each independent recording, it is not biased by previously scored existing datasets. Thus, we find Sleep-Deep-Learner performs well when used on signals altered by a drug, disease model, or genetic modification.

12.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688901

RESUMEN

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Asunto(s)
Adenosina , Núcleo Accumbens , Receptor de Adenosina A2A , Sueño de Onda Lenta , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Masculino , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Adenosina/metabolismo , Adenosina/farmacología , Regulación Alostérica , Sueño de Onda Lenta/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Luz , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Agonistas del Receptor de Adenosina A2/farmacología
13.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187568

RESUMEN

Sleep-wake scoring is a time-consuming, tedious but essential component of clinical and pre-clinical sleep research. Sleep scoring is even more laborious and challenging in rodents due to the smaller EEG amplitude differences between states and the rapid state transitions which necessitate scoring in shorter epochs. Although many automated rodent sleep scoring methods exist, they do not perform as well when scoring new data sets, especially those which involve changes in the EEG/EMG profile. Thus, manual scoring by expert scorers remains the gold-standard. Here we take a different approach to this problem by using a neural network to accelerate the scoring of expert scorers. Sleep-Deep-Net (SDN) creates a bespoke deep convolution neural network model for individual electroencephalographic or local-field-potential records via transfer learning of GoogleNet, by learning from a small subset of manual scores of each EEG/LFP record as provided by the end-user. SDN then automates scoring of the remainder of the EEG/LFP record. A novel REM scoring correction procedure further enhanced accuracy. SDN reliably scores EEG and LFP data and retains sleep-wake architecture in wild-type mice, in sleep induced by the hypnotic zolpidem, in a mouse model of Alzheimer's disease and in a genetic knock-down study, when compared to manual scoring. SDN reduced manual scoring time to 1/12. Since SDN uses transfer learning on each independent recording, it is not biased by previously scored existing data sets. Thus, we find SDN performs well when used on signals altered by a drug, disease model or genetic modification.

14.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986953

RESUMEN

Here we describe a novel group of basal forebrain (BF) neurons expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1 + neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1 + neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1 + neurons was high, 5-6 times that of neighboring cholinergic, parvalbumin or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1 + neurons to brain regions involved in sleep-wake control, motivated behaviors and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area and olfactory bulb. Chemogenetic activation of BF Npas1 + neurons in the light (inactive) period increased the amount of wakefulness and the latency to sleep for 2-3 hr, due to an increase in long wake bouts and short NREM sleep bouts. Non-REM slow-wave (0-1.5 Hz) and sigma (9-15 Hz) power, as well as sleep spindle density, amplitude and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1 + neurons in stress responsiveness, the anatomical projections of BF Npas1 + neurons and the effect of activating them suggest a possible role for BF Npas1 + neurons in motivationally-driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia and other neuropsychiatric conditions involving BF. SIGNIFICANCE STATEMENT: We characterize a group of basal forebrain (BF) neurons in the mouse expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. BF Npas1 + neurons are a major subset of GABAergic neurons distinct and more numerous than cholinergic, parvalbumin or glutamate neurons. BF Npas1 + neurons target brain areas involved in arousal, motivation and olfaction. Activation of BF Npas1 + neurons in the light (inactive) period increased wakefulness and the latency to sleep due to increased long wake bouts. Non-REM sleep slow waves and spindles were reduced reminiscent of findings in several neuropsychiatric disorders. Identification of this major subpopulation of BF GABAergic wake-promoting neurons will allow studies of their role in insomnia, dementia and other conditions involving BF.

15.
Brain Res Bull ; 188: 223-232, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738502

RESUMEN

Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4 Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.


Asunto(s)
Electroencefalografía , Sueño , Encéfalo/fisiología , Sueño/fisiología
16.
Nat Commun ; 13(1): 2246, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35473906

RESUMEN

Identification of mechanisms which increase deep sleep could lead to novel treatments which promote the restorative effects of sleep. Here, we show that knockdown of the α3 GABAA-receptor subunit from parvalbumin neurons in the thalamic reticular nucleus using CRISPR-Cas9 gene editing increased the thalamocortical delta (1.5-4 Hz) oscillations which are implicated in many health-promoting effects of sleep. Inhibitory synaptic currents in thalamic reticular parvalbumin neurons were strongly reduced in vitro. Further analysis revealed that delta power in long NREM bouts prior to NREM-REM transitions was preferentially affected by deletion of α3 subunits. Our results identify a role for GABAA receptors on thalamic reticular nucleus neurons and suggest antagonism of α3 subunits as a strategy to enhance delta activity during sleep.


Asunto(s)
Parvalbúminas , Sueño de Onda Lenta , Animales , Ratones , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiología , Ácido gamma-Aminobutírico
17.
J Neurosci ; 30(40): 13254-64, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926651

RESUMEN

Sleep loss negatively impacts performance, mood, memory, and immune function, but the homeostatic factors that impel sleep after sleep loss are imperfectly understood. Pharmacological studies had implicated the basal forebrain (BF) inducible nitric oxide (NO) synthase (iNOS)-dependent NO as a key homeostatic factor, but its cellular source was obscure. To obtain direct evidence about the cellular source of iNOS-generated NO during sleep deprivation (SD), we used intracerebroventricular perfusion in rats of the cell membrane-permeable dye diaminofluorescein-2/diacetate (DAF-2/DA) that, once intracellular, bound NO and fluoresced. To circumvent the effects of neuronal NOS (nNOS), DAF-2/DA was perfused in the presence of an nNOS inhibitor. SD led to DAF-positive fluorescence only in the BF neurons, not glia. SD increased expression of iNOS, which colocalized with NO in neurons and, more specifically, in prolonged wakefulness-active neurons labeled by Fos. SD-induced iNOS expression in wakefulness-active neurons positively correlated with sleep pressure, as measured by the number of attempts to enter sleep. Importantly, SD did not induce Fos or iNOS in stress-responsive central amygdala and paraventricular hypothalamic neurons, nor did SD elevate corticosterone, suggesting that the SD protocol did not provoke iNOS expression through stress. We conclude that iNOS-produced neuronal NO is an important homeostatic factor promoting recovery sleep after SD.


Asunto(s)
Núcleo Basal de Meynert/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/biosíntesis , Privación de Sueño/metabolismo , Vigilia/fisiología , Animales , Núcleo Basal de Meynert/enzimología , Inyecciones Intraventriculares/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/enzimología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Ratas , Ratas Wistar , Sueño/fisiología , Privación de Sueño/enzimología , Privación de Sueño/fisiopatología
18.
J Neurosci ; 30(26): 9007-16, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20592221

RESUMEN

Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.


Asunto(s)
Adenosina Trifosfato/metabolismo , Encéfalo/fisiología , Sueño/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina/farmacología , Animales , Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Creatina/metabolismo , Ritmo Delta , Electroencefalografía , Masculino , Fosfocreatina/metabolismo , Fosforilación , Fotoperiodo , Ratas , Ratas Sprague-Dawley , Privación de Sueño/metabolismo , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiología , Factores de Tiempo , Vigilia/fisiología
19.
J Neurochem ; 116(2): 260-72, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21062286

RESUMEN

Both adenosine and nitric oxide (NO) are known for their role in sleep homeostasis, with the basal forebrain (BF) wakefulness center as an important site of action. Previously, we reported a cascade of homeostatic events, wherein sleep deprivation (SD) induces the production of inducible nitric oxide synthase (iNOS)-dependent NO in BF, leading to enhanced release of extracellular adenosine. In turn, increased BF adenosine leads to enhanced sleep intensity, as measured by increased non-rapid eye movement sleep EEG delta activity. However, the presence and time course of similar events in cortex has not been studied, although a frontal cortical role for the increase in non-rapid eye movement recovery sleep EEG delta power is known. Accordingly, we performed simultaneous hourly microdialysis sample collection from BF and frontal cortex (FC) during 11 h SD. We observed that both areas showed sequential increases in iNOS and NO, followed by increases in adenosine. BF increases began at 1 h SD, whereas FC increases began at 5 h SD. iNOS and Fos-double labeling indicated that iNOS induction occurred in BF and FC wake-active neurons. These data support the role of BF adenosine and NO in sleep homeostasis and indicate the temporal and spatial sequence of sleep homeostatic cascade for NO and adenosine.


Asunto(s)
Adenosina/metabolismo , Corteza Cerebral/metabolismo , Homeostasis/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/fisiología , Prosencéfalo/metabolismo , Privación de Sueño/metabolismo , Fases del Sueño/fisiología , Adenosina/fisiología , Animales , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Prosencéfalo/fisiología , Ratas , Ratas Wistar , Factores de Tiempo
20.
Brain Struct Funct ; 226(6): 1755-1778, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33997911

RESUMEN

The basal forebrain (BF) is involved in arousal, attention, and reward processing but the role of individual BF neuronal subtypes is still being uncovered. Glutamatergic neurons are the least well-understood of the three main BF neurotransmitter phenotypes. Here we analyzed the distribution, size, calcium-binding protein content and projections of the major group of BF glutamatergic neurons expressing the vesicular glutamate transporter subtype 2 (vGluT2) and tested the functional effect of activating them. Mice expressing Cre recombinase under the control of the vGluT2 promoter were crossed with a reporter strain expressing the red fluorescent protein, tdTomato, to generate vGluT2-cre-tdTomato mice. Immunohistochemical staining for choline acetyltransferase and a cross with mice expressing green fluorescent protein selectively in GABAergic neurons confirmed that cholinergic, GABAergic and vGluT2+ neurons represent distinct BF subpopulations. Subsets of BF vGluT2+ neurons expressed the calcium-binding proteins calbindin or calretinin, suggesting that multiple subtypes of BF vGluT2+ neurons exist. Anterograde tracing using adeno-associated viral vectors expressing channelrhodopsin2-enhanced yellow fluorescent fusion proteins revealed major projections of BF vGluT2+ neurons to neighboring BF cholinergic and parvalbumin neurons, as well as to extra-BF areas involved in the control of arousal or aversive/rewarding behavior such as the lateral habenula and ventral tegmental area. Optogenetic activation of BF vGluT2+ neurons elicited a striking avoidance of the area where stimulation was given, whereas stimulation of BF parvalbumin or cholinergic neurons did not. Together with previous optogenetic findings suggesting an arousal-promoting role, our findings suggest that BF vGluT2 neurons play a dual role in promoting wakefulness and avoidance behavior.


Asunto(s)
Prosencéfalo Basal , Animales , Reacción de Prevención , Prosencéfalo Basal/metabolismo , Colinérgicos , Neuronas Colinérgicas/metabolismo , Ácido Glutámico , Ratones , Parvalbúminas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA