Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 149(24): 244506, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30599702

RESUMEN

Field and laboratory measurements indicate that atmospheric organic aerosol particles can be present in a highly viscous state. In contrast to liquid state particles, the gas phase equilibration to ambient relative humidity (RH) can be kinetically limited and governed by condensed phase diffusion. In water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance, we observed a characteristic shift behavior of the Mie scattering resonances indicative of the changing radial structure of the particle, thus providing an experimental method to track the diffusion process inside the particle. Due to the plasticizing effect of water, theory predicts extremely steep, front-like water concentration gradients inside highly viscous particles exposed to a rapid increase in RH. The resulting quasi step-like concentration profile motivates the use of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The particle growth and reduction of the shell refractive index can be observed experimentally as redshift and blueshift behavior of the Mie resonances, respectively. We can deduce the particle radius as well as a core-shell radius ratio from the measured shift pattern and Mie scattering calculations. Using both the growth information obtained from the Mie resonance redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The observed shift behavior of the Mie resonances provides direct evidence of very steep diffusion fronts caused by the plasticizing effect of water and a method to validate previous diffusivity measurements.

2.
Phys Rev Lett ; 115(10): 107001, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26382696

RESUMEN

We perform, as a function of uniaxial stress, an optical-reflectivity investigation of the representative "parent" ferropnictide BaFe(2)As(2) in a broad spectral range, across the tetragonal-to-orthorhombic phase transition and the onset of the long-range antiferromagnetic (AFM) order. The infrared response reveals that the dc transport anisotropy in the orthorhombic AFM state is determined by the interplay between the Drude spectral weight and the scattering rate, but that the dominant effect is clearly associated with the metallic spectral weight. In the paramagnetic tetragonal phase, though, the dc resistivity anisotropy of strained samples is almost exclusively due to stress-induced changes in the Drude weight rather than in the scattering rate, definitively establishing the anisotropy of the Fermi surface parameters as the primary effect driving the dc transport properties in the electronic nematic state.

3.
Nat Commun ; 8: 15883, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671188

RESUMEN

Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA