Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611856

RESUMEN

SARS-CoV-2 is the virus responsible for a respiratory disease called COVID-19 that devastated global public health. Since 2020, there has been an intense effort by the scientific community to develop safe and effective prophylactic and therapeutic agents against this disease. In this context, peptides have emerged as an alternative for inhibiting the causative agent. However, designing peptides that bind efficiently is still an open challenge. Here, we show an algorithm for peptide engineering. Our strategy consists of starting with a peptide whose structure is similar to the interaction region of the human ACE2 protein with the SPIKE protein, which is important for SARS-COV-2 infection. Our methodology is based on a genetic algorithm performing systematic steps of random mutation, protein-peptide docking (using the PyRosetta library) and selecting the best-optimized peptides based on the contacts made at the peptide-protein interface. We performed three case studies to evaluate the tool parameters and compared our results with proposals presented in the literature. Additionally, we performed molecular dynamics (MD) simulations (three systems, 200 ns each) to probe whether our suggested peptides could interact with the spike protein. Our results suggest that our methodology could be a good strategy for designing peptides.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2 , Péptidos/farmacología
2.
Int J Biol Macromol ; 274(Pt 1): 133283, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909731

RESUMEN

Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.

3.
Front Bioinform ; 1: 730350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303745

RESUMEN

Evolutionarily related proteins can present similar structures but very dissimilar sequences. Hence, understanding the role of the inter-residues contacts for the protein structure has been the target of many studies. Contacts comprise non-covalent interactions, which are essential to stabilize macromolecular structures such as proteins. Here we show VTR, a new method for the detection of analogous contacts in protein pairs. The VTR web tool performs structural alignment between proteins and detects interactions that occur in similar regions. To evaluate our tool, we proposed three case studies: we 1) compared vertebrate myoglobin and truncated invertebrate hemoglobin; 2) analyzed interactions between the spike protein RBD of SARS-CoV-2 and the cell receptor ACE2; and 3) compared a glucose-tolerant and a non-tolerant ß-glucosidase enzyme used for biofuel production. The case studies demonstrate the potential of VTR for the understanding of functional similarities between distantly sequence-related proteins, as well as the exploration of important drug targets and rational design of enzymes for industrial applications. We envision VTR as a promising tool for understanding differences and similarities between homologous proteins with similar 3D structures but different sequences. VTR is available at http://bioinfo.dcc.ufmg.br/vtr.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA