RESUMEN
Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.
RESUMEN
The first lanthanide dinitrogen photoswitch [(C5Me4H)2(THF)Lu]2(µ-η2:η2-N2), 1, is reported. 1 is a unique example of controlled isomerization between side-on and end-on coordination modes of [N2]2- in a bimetallic lutetium dinitrogen complex that results in photochromism. Near-infrared light (NIR) was used to promote this effect, as evidenced by single X-ray diffraction (XRD) connectivity and Raman data, generating the [N2]2- end-on bound isomer, [(C5Me4H)2(THF)Lu]2(µ-η1:η1-N2), 2. Although different ligands and coordinating solvents were studied to replicate and control the optical properties in 1/2, only the original configuration with C5Me4H ligands and THF as the coordinating solvent worked. Supported by the first-principles calculations, the electronic structures along with the mechanistic details of the side-on to end-on isomerization were unraveled. Preliminary reactivity studies show that 2 formed with NIR light reacts with anthracene, generating dihydroanthracene and anthracene dimers, indicating new redox reaction pathways.
RESUMEN
Neptunium can exist in multiple oxidation states, including the rare and poorly understood heptavalent form. In this work, we monitored the formation of heptavalent neptunium [Np(VII)O4(OH)2]3- during ozonolysis of aqueous MOH (M=Li, Na, K) solutions using a combined experimental and theoretical approach. All experimental reactions were closely monitored via absorption and vibrational spectroscopy to follow both the oxidation state and the speciation of neptunium guided by the calculated vibrational frequencies for various neptunium species. The mechanism of the reaction partly involves oxidative dissolution of transient Np(VI) oxide/hydroxide solid phases, the identity of which are dependent on the co-precipitating counter-cation Li+/Na+/K+. Additional calculations suggest that the most favorable energetic pathway occurs through the reaction of a [Np(V)O2(OH)4]3- with the hydroxide radical to form [Np(VI)O2(OH)4]2-, followed by an additional oxidation with HOâ to create [Np(VII)O4(OH)2]3-.
RESUMEN
The activation of chalcogen-chalcogen bonds using organometallic uranium complexes has been well documented for S-S, Se-Se, and Te-Te bonds. In stark contrast, reports concerning the ability of a uranium complex to activate the O-O bond of an organic peroxide are exceedingly rare. Herein, we describe the peroxide O-O bond cleavage of 9,10-diphenylanthracene-9,10-endoperoxide in nonaqueous media, mediated by a uranium(III) precursor [((Me,AdArO)3N)UIII(dme)] to generate a stable uranium(V) bis-alkoxide complex, namely, [((Me,AdArO)3N)UV(DPAP)]. This reaction proceeds via an isolable, alkoxide-bridged diuranium(IV/IV) species, implying that the oxidative addition occurs in two sequential, single-electron oxidations of the metal center, including rebound of a terminal oxygen radical. This uranium(V) bis-alkoxide can then be reduced with KC8 to form a uranium(IV) complex, which upon exposure to UV light, in solution, releases 9,10-diphenylanthracene to generate a cyclic uranyl trimer through formal two-electron photooxidation. Analysis of the mechanism of this photochemical oxidation via density functional theory (DFT) calculations indicates that the formation of this uranyl trimer occurs through a fleeting uranium cis-dioxo intermediate. At room temperature, this cis-configured dioxo species rapidly isomerizes to a more stable trans configuration through the release of one of the alkoxide ligands from the complex, which then goes on to form the isolated uranyl trimer complex.
RESUMEN
The undeniable importance of nanoparticles has led to vast efforts, in many fields of science, to understand their chemical and physical properties. In this paper, the morphology dependence of f-element nanoparticles is correlated to the oxygen environment and the type and coverage of capping ligands. This dependence was evaluated by first-principles calculations of the surface energies of different crystallographic planes (001, 110, and 111) as a function of the relative oxygen chemical potential and under the influence of different ligands. Uranium dioxide nanoparticles were the focus of this study due to their high sensitivity to oxidation compared to thorium dioxide nanoparticles, a homoleptic material but insensitive to oxidation. To fully explain the experimental observations of uranium dioxide nanocrystals, theoretical modeling shows that the consideration of surfaces with different oxidation conditions is necessary. It is shown that, for materials with low oxidation potential, such as uranium dioxide, the oxygen environment and capping ligand concentration are competing factors in determining the nanoparticle morphology.
RESUMEN
Neptunium makes up the largest percentage of minor actinides found in spent nuclear fuel, yet separations of this element have proven difficult due to its rich redox chemistry. Developing new reprocessing techniques should rely on understanding how to control the Np oxidation state and its interactions with different ligands. Designing new ligands for separations requires understanding how to properly tune a system toward a desired trait through functionalization. Emerging technologies for minor actinide separations focus on ligands containing carboxylate or pyridine functional groups, which are desirable due to their high degree of functionalization. Here, we use DFT calculations to study the interactions of carboxylate and polypyridine ligands with the neptunyl cation [Np(V/VI)O2]+/2+. A systematic study is performed by varying the electronic properties of the carboxylate and polypyridine ligands through the inclusion of different electron-withdrawing and electron-donating R groups. We focus on how these groups can affect geometric properties, electronic structure, and bonding characterization as a function of the metal oxidation state and ligand character and discuss how these factors can play a role in neptunium ligand design principles.
RESUMEN
Understanding the fundamental chemistry of soft N,S-donor ligands with actinides across the series is critical for separation science toward sustainable nuclear energy. This task is particularly challenging when the ligands are redox active. We herein report a series of actinyl complexes with a N,S-donor redox-active ligand that stabilizes different oxidation states across the actinide series. These complexes are isolated and characterized in the gas phase, along with high-level electronic structure studies. The redox-active N,S-donor ligand in the products, C5H4NS, acts as a monoanion in [UVIO2(C5H4NS-)]+ but as a neutral radical with unpaired electrons localized on the sulfur atom in [NpVO2(C5H4NSâ¢)]+ and [PuVO2(C5H4NSâ¢)]+, resulting in different oxidation states for uranium and transuranic elements. This is rationalized by considering the relative energy levels of actinyl(VI) 5f orbitals and S 3p lone pair orbitals of the C5H4NS- ligand and the cooperativity between An-N and An-S bonds that provides additional stability for the transuranic elements.
RESUMEN
Modern molten salt reactor design and the techniques of electrorefining spent nuclear fuels require a better understanding of the chemical and physical behavior of lanthanide/actinide ions with different oxidation states dissolved in various solvent salts. The molecular structures and dynamics that are driven by the short-range interactions between solute cations and anions and long-range solute and solvent cations are still unclear. In order to study the structural change of solute cations caused by different solvent salts, we performed first-principles molecular dynamics simulations in molten salts and extended X-ray absorption fine structure (EXAFS) measurements for the cooled molten salt samples to identify the local coordination environment of Eu2+ and Eu3+ ions in CaCl2, NaCl, and KCl. The simulations reveal that with the increasing polarizing the outer sphere cations from K+ to Na+ to Ca2+, the coordination number (CN) of Cl- in the first solvation shell increases from 5.6 (Eu2+) and 5.9 (Eu3+) in KCl to 6.9 (Eu2+) and 7.0 (Eu3+) in CaCl2. This coordination change is validated by the EXAFS measurements, in which the CN of Cl- around Eu increases from 5 in KCl to 7 in CaCl2. Our simulation shows that the fewer Cl- ions coordinated to Eu leads to a more rigid first coordination shell with longer lifetime. Furthermore, the diffusivities of Eu2+/Eu3+ are related to the rigidity of their first coordination shell of Cl-: the more rigid the first coordination shell is, the slower the solute cations diffuse.
RESUMEN
A method to explore head-to-head Ï back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2 (L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2 [N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (Ï) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.
RESUMEN
Advancing the field of chemical separations is important for nearly every area of science and technology. Some of the most challenging separations are associated with the americium ion Am(III) for its extraction in the nuclear fuel cycle, 241Am production for industrial usage, and environmental cleanup efforts. Herein, we study a series of extractants, using first-principle calculations, to identify the electronic properties that preferentially influence Am(III) binding in separations. As the most used extractant family and because it affords a high degree of functionalization, the polypyridyl family of extractants is chosen to study the effects of the planarity of the structure, preorganization of coordinating atoms, and substitution of various functional groups. The actinyl ions are used as a structurally simplified surrogate model to quickly screen the most promising candidates that can separate these metal ions. The down-selected extractants are then tested for the Am(III)/Eu(III) system. Our results show that π interactions, especially those between the central terpyridine ring and Am(III), play a crucial role in separation. Adding an electron-donating group onto the terpyridine backbone increases the binding energies to Am(III) and stabilizes Am-terpyridine coordination. Increasing the planarity of the extractant increases the binding strength as well, although this effect is found to be rather weak. Preorganizing the coordinating atoms of an extractant to their binding configuration as in the bound metal complex speeds up the binding process and significantly improves the kinetics of the separation process. This conclusion is validated by the synthesized 1,2-dihydrodipyrido[4,3-b;5,6-b]acridine (13) extractant, a preorganized derivative of the terpyridine extractant, which we experimentally showed was four times more effective than terpyridine at separating Am3+ from Eu3+ (SFAm/Eu â¼ 23 ± 1).
Asunto(s)
Americio , Complejos de Coordinación , Americio/química , Complejos de Coordinación/química , Iones/químicaRESUMEN
Actinium-225 (225Ac) is an excellent candidate for targeted radiotherapeutic applications for treating cancer, because of its 10-day half-life and emission of four high-energy α2+ particles. To harness and direct the energetic potential of actinium, strongly binding chelators that remain stable in vivo during biological targeting must be developed. Unfortunately, controlling chelation for actinium remains challenging. Actinium is the largest +3 cation on the periodic table and has a 6d05f0 electronic configuration, and its chemistry is relatively unexplored. Herein, we present theoretical work focused on improving the understanding of actinium bonding with macrocyclic chelating agents as a function of (1) macrocycle ring size, (2) the number and identity of metal binding functional groups, and (3) the length of the tether linking the metal binding functional group to the macrocyclic backbone. Actinium binding by these chelators is presented within the context of complexation with DOTA4-, the most relevant Ac3+ binding agent for contemporary radiopharmaceutical applications. The results enabled us to develop a new strategy for actinium chelator design. The approach is rooted in our identification that Ac3+-chelation chemistry is dominated by ionic bonding interactions and relies on (1) maximizing electrostatic interactions between the metal binding functional group and the Ac3+ cation and (2) minimizing electronic repulsion between negatively charged actinium binding functional groups. This insight will provide a foundation for future innovation in developing the next generation of multifunctional actinium chelators.
Asunto(s)
Actinio/química , Quelantes/síntesis química , Diseño Asistido por Computadora , Complejos de Coordinación/síntesis química , Compuestos Macrocíclicos/síntesis química , Radiofármacos/síntesis química , Quelantes/química , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Compuestos Macrocíclicos/química , Estructura Molecular , Radiofármacos/química , Electricidad EstáticaRESUMEN
The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.
RESUMEN
Machine learning (ML) plays a growing role in the design and discovery of chemicals, aiming to reduce the need to perform expensive experiments and simulations. ML for such applications is promising but difficult, as models must generalize to vast chemical spaces from small training sets and must have reliable uncertainty quantification metrics to identify and prioritize unexplored regions. Ab initio computational chemistry and chemical intuition alike often take advantage of differences between chemical conditions, rather than their absolute structure or state, to generate more reliable results. We have developed an analogous comparison-based approach for ML regression, called pairwise difference regression (PADRE), which is applicable to arbitrary underlying learning models and operates on pairs of input data points. During training, the model learns to predict differences between all possible pairs of input points. During prediction, the test points are paired with all training set points, giving rise to a set of predictions that can be treated as a distribution of which the mean is treated as a final prediction and the dispersion is treated as an uncertainty measure. Pairwise difference regression was shown to reliably improve the performance of the random forest algorithm across five chemical ML tasks. Additionally, the pair-derived dispersion is both well correlated with model error and performs well in active learning. We also show that this method is competitive with state-of-the-art neural network techniques. Thus, pairwise difference regression is a promising tool for candidate selection algorithms used in chemical discovery.
Asunto(s)
Algoritmos , Aprendizaje Automático , Redes Neurales de la Computación , IncertidumbreRESUMEN
In this paper, we have proposed a first-principles methodology to screen transition metal complexes against a particular organic solvent and organic solvents against a particular transition metal complex based on their solubility information without the knowledge of heat of fusion and melting temperature. The energy density of a non-aqueous redox flow cell directly depends on the solubility of the redox active species in the non-aqueous medium. We have used the "COSMOSAC-LANL" activity coefficient model (A. Karmakar, R. Mukundan, P. Yang and E. R. Batista, RSC Adv., 2019, 18506-18526; A. Karmakar and R. Mukundan, Phys. Chem. Chem. Phys., 2019, 19667-19685) which is based on first-principles COSMO calculations where the microscopic information is passed to the macroscopic world via a dielectric continuum solvation model, followed by a post-statistical thermodynamic treatment of the self-consistent properties of the solute particle to calculate the solubility. To model the activity coefficient at infinite dilution for the binary mixtures, a 3-suffix Margules (3sM) function is introduced for the quantitative estimation of the asymmetric interactions and, for the combinatorial term, the Staverman-Guggenheim (SG) form is used. The new activity coefficient model is separately called the "LANL" activity coefficient model. The metal complex and the organic solvent have been treated as a simple binary mixture. The present model has been applied to a set of 14 different organic solvents and 16 different transition metal complexes. Using the new LANL activity coefficient model in combination with the ADF-COSMOSAC-2013 model, we have shown how one can improve the solubility of a transition metal complex in an organic solvent. We applied our model to screen 84 binary mixtures to predict the compatible pair of redox active species and organic solvent to increase the energy density. The solvation mechanism of the transition metal complexes in the organic solvents was obtained using the new model. The results have been compared with the experimental and theoretical results where they are available.
RESUMEN
Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.
RESUMEN
Copper dissolution in nitric acid is a historic reaction playing a central role in many industrial processes, particularly for metal recovery from the electronics to nuclear industries. The mechanism through which this process occurs is debated. In order to better understand this process, quantum chemical calculations were performed to elucidate the key steps in the mechanism of copper dissolution in nitric acid. We combine both Kohn-Sham density functional theory and ab initio molecular dynamics simulations to understand the mechanism of the formation of the key products: NO2, HNO2, and NO. Our calculations suggest that the mechanisms of formation of NO2, HNO2, and NO are interconnected.
RESUMEN
Bis[o-(trifluoromethyl)phenyl]dithiophosphinate is a sulfur-donating ligand capable of providing the largest reported trivalent lanthanide (Ln3+)-actinide (An3+) group separation factors. Literature has shown that the placement and number of the -CF3 functionalities on the aryl rings proximate to the ligating sulfur atoms can significantly impact Ln3+-An3+ extraction and separation factors, but the complexation thermodynamics of -CF3-derivatized aryldithiophosphinates have not been considered to date. This systematic study considers the complexation of three CF3-substituted aryldithiophosphinates-bis(phenyl)dithiophosphinate (LI), [o-(trifluoromethyl)phenyl](phenyl)dithiophosphinate (LII), and bis[o-(trifluoromethyl)phenyl]dithiophosphinate (LIII), with Nd3+ in an ethanolic environment. The chelating ability of NdIII by these ligands follows the order of LIII > LII > LI, which is in line with the reported extraction efficiency. The positive ΔS, as well as positive ΔH, suggests that Nd3+ chelation is entropy-driven and effective desolvation is critical to enabling Nd3+ interaction with otherwise weakly interacting sulfur-containing ligands. Extended X-ray absorption fine structure results confirm thermodynamic investigations and suggest that LI can only form up to 1:2 (M-L) complexes, while LII and LIII form up to 1:3 complexes with Nd3+. All three LIII anions have bidentate interactions with NdIII, but two LII anions have bidentate interactions with Nd3+, while the third LII anion is monodentate. The significant increase in ΔS with each o-CF3 addition suggests aiding desolvation could be central in enabling f-element interaction with weakly interacting donor groups, and this report provides an approach to controlling f-element desolvation as an innovative f-element chelating strategy.
RESUMEN
We present an optimized density-functional tight-binding (DFTB) parameterization for iron-based complexes based on the popular trans3d set of parameters. The transferability of the original and optimized parameterizations is assessed using a set of 50 iron complexes, which include carbonyl, cyanide, polypyridine, and cyclometalated ligands. DFTB-optimized structures predicted using the trans3d parameters show a good agreement with both experimental crystal geometries and density functional theory (DFT)-optimized structures for Fe-N bond lengths. Conversely, Fe-C bond lengths are systematically overestimated. We improve the accuracy of Fe-C interactions by truncating the Fe-O repulsive potential and reparameterizing the Fe-C repulsive potential using a training set of six isolated iron complexes. The new trans3d*-LANLFeC parameter set can produce accurate Fe-C bond lengths in both geometry optimizations and molecular dynamics (MD) simulations, without significantly affecting the accuracy of Fe-N bond lengths. Moreover, the potential energy curves of Fe-C interactions are considerably improved. This improved parameterization may open the door to accurate MD simulations at the DFTB level of theory for large systems containing iron complexes, such as sensitizer-semiconductor assemblies in dye-sensitized solar cells, that are not easily accessible with DFT approaches because of the large number of atoms.
RESUMEN
Synthetic strategies to yield molecular complexes of high-valent lanthanides, other than the ubiquitous Ce4+ ion, are exceptionally rare, and thorough, detailed characterization in these systems is limited by complex lifetime and reaction and isolation conditions. The synthesis of high-symmetry complexes in high purity with significant lifetimes in solution and the solid state is essential for determining the role of ligand-field splitting, multiconfigurational behavior, and covalency in governing the reactivity and physical properties of these potentially technologically transformative tetravalent ions. We report the synthesis and physical characterization of an S4 symmetric, four-coordinate tetravalent terbium complex, [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (where Et is ethyl and tBu is tert-butyl). The ligand field in this complex is weak and the metal-ligand bonds sufficiently covalent so that the tetravalent terbium ion is stable and accessible via a mild oxidant from the anionic, trivalent, terbium precursor, [(Et2O)K][Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4]. The significant stability of the tetravalent complex enables its thorough characterization. The stepwise development of the supporting ligand points to key ligand control elements for further extending the known tetravalent lanthanide ions in molecular complexes. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge spectroscopy (XANES), and density functional theory studies indicate a 4f7 ground state for [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] with considerable zero-field splitting, demonstrating that magnetic, tetravalent lanthanide ions engage in covalent metal-ligand bonds. This result has significant implications for the use of tetravalent lanthanide ions in magnetic applications since the observed zero-field splitting is intermediate between that observed for the trivalent lanthanides and for the transition metals. The similarity of the multiconfigurational behavior in the ground state of [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (measured by Tb L3-edge XAS) to that observed in TbO2 implicates ligand control of multiconfigurational behavior as a key component of the stability of the complex.
Asunto(s)
Complejos de Coordinación/química , Terbio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Fosforanos/síntesis química , Fosforanos/química , Espectroscopía de Absorción de Rayos XRESUMEN
A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (µg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.