Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurobiol Dis ; 37(3): 656-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20005954

RESUMEN

Sandhoff disease is an autosomal recessive lysosomal disorder due to mutations in the beta-hexosaminidase beta-chain gene, resulting in beta-hexosaminidases A (alphabeta) and B (betabeta) deficiency and GM2 ganglioside accumulation in the brain. In this study, our aim was to demonstrate that transduction of cerebral endothelial cells cultured in two-chamber culture inserts with a lentiviral vector encoding the hexosaminidases alpha and beta chains could induce a vectorial secretion of hexosaminidases. Therefore, the human cerebral endothelial cell line hCMEC/D3 was infected with the bicistronic vector from the apical compartment, and beta-hexosaminidase activity was measured in transduced cells and in deficient fibroblasts co-cultured in the basal (i.e. brain) compartment. Induced beta-hexosaminidase secretion by transduced hCMEC/D3 cells was sufficient to allow for a 70-90% restoration of beta-hexosaminidase activity in deficient fibroblasts. On the basis of these in vitro data, we propose that brain endothelium be considered as a novel therapeutic target in Sandhoff disease.


Asunto(s)
Células Endoteliales/enzimología , Terapia Genética/métodos , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/terapia , Transducción Genética/métodos , beta-N-Acetilhexosaminidasas/metabolismo , Línea Celular Transformada , Arterias Cerebrales/citología , Arterias Cerebrales/enzimología , Cerebro/irrigación sanguínea , Cerebro/enzimología , Cerebro/fisiopatología , Técnicas de Cocultivo , Cámaras de Difusión de Cultivos , Células Endoteliales/metabolismo , Fibroblastos/enzimología , Fibroblastos/metabolismo , Gangliósido G(M2)/metabolismo , Vectores Genéticos/farmacología , Vectores Genéticos/uso terapéutico , Humanos , Lentivirus/genética , Enfermedad de Sandhoff/genética , beta-N-Acetilhexosaminidasas/genética
2.
Hum Mol Genet ; 17(24): 3876-86, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18782850

RESUMEN

Glycogen storage disease type II (GSDII) or Pompe disease is an autosomal recessive disorder caused by defects in the acid alpha-glucosidase gene, which leads to lysosomal glycogen accumulation and enlargement of the lysosomes mainly in cardiac and muscle tissues, resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severely affected patients. Enzyme replacement therapy has already proven to be beneficial in this disease, but correction of pathology in skeletal muscle still remains a challenge. As substrate deprivation was successfully used to improve the phenotype in other lysosomal storage disorders, we explore here a novel therapeutic approach for GSDII based on a modulation of muscle glycogen synthesis. Short hairpin ribonucleic acids (shRNAs) targeted to the two major enzymes involved in glycogen synthesis, i.e. glycogenin (shGYG) and glycogen synthase (shGYS), were selected. C2C12 cells and primary myoblasts from GSDII mice were stably transduced with lentiviral vectors expressing both the shRNAs and the enhanced green fluorescent protein (EGFP) reporter gene. Efficient and specific inhibition of GYG and GYS was associated not only with a decrease in cytoplasmic and lysosomal glycogen accumulation in transduced cells, but also with a strong reduction in the lysosomal size, as demonstrated by confocal microscopy analysis. A single intramuscular injection of recombinant AAV-1 (adeno-associated virus-1) vectors expressing shGYS into newborn GSDII mice led to a significant reduction in glycogen accumulation, demonstrating the in vivo therapeutic efficiency. These data offer new perspectives for the treatment of GSDII and could be relevant to other muscle glycogenoses.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Glucógeno/biosíntesis , Glucógeno/genética , Interferencia de ARN/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/genética , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Humanos , Ratones , Ratones Noqueados
3.
J Gene Med ; 11(4): 279-87, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19263466

RESUMEN

BACKGROUND: Glycogen storage disease type II (GSDII) or Pompe disease is an inherited disease of glycogen metabolism caused by a lack of functional lysosomal acid alpha-glucosidase (GAA). Affected individuals store glycogen in lysosomes resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe form. Even if enzyme replacement therapy (ERT) has already proven some efficacy, its results remain heterogeneous in skeletal muscle, especially in cross reactive immunological material (CRIM)-negative patients. We investigated for the first time the use of hematopoietic stem cell (HSC) gene therapy in a murine model of GSDII. METHODS: Deficient HSC were transduced with a lentiviral vector expressing human GAA or enhanced green fluorescent protein (GFP) under the control of the retroviral MND promoter and transplanted into lethally irradiated GSDII mice. Animals were then subjected to an ERT protocol for 5 weeks and monitored for metabolic correction and GAA-induced immune reaction. RESULTS: GAA was expressed as a correctly processed protein, allowing a complete enzymatic correction in transduced deficient cells without toxicity. Seventeen weeks after transplantation, a partial restoration of the GAA enzymatic activity was observed in bone marrow and peripheral blood cells of GSDII mice, allowing a significant glycogen clearance in skeletal muscle. ERT induced a robust antibody response in GFP-transplanted mice, whereas no immune reaction could be detected in GAA-transplanted mice. CONCLUSIONS: Lentiviral vector-mediated HSC gene therapy leads to a partial metabolic correction and induces a tolerance to ERT in GSDII mice. This strategy could enhance the efficacy of ERT in CRIM-negative Pompe patients.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Células Madre Hematopoyéticas/metabolismo , Tolerancia Inmunológica , alfa-Glucosidasas/administración & dosificación , Animales , Modelos Animales de Enfermedad , Terapia Enzimática , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Resultado del Tratamiento , alfa-Glucosidasas/genética
4.
In Vitro Cell Dev Biol Anim ; 44(10): 397-406, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18810562

RESUMEN

Glycogen storage disease type II (GSDII) or Pompe disease is an inherited disease of glycogen metabolism caused by a lack of functional lysosomal acid alpha-glucosidase (GAA). Affected individuals store glycogen in lysosomes resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe form. We investigated for the first time the use of lentiviral vectors to correct the GSDII phenotype in human and murine GAA-deficient cells. Fibroblasts from infantile and adult GSDII patients were efficiently transduced by a GAA-expressing lentiviral vector placed under the control of the strong MND promoter, leading to a complete restoration of enzymatic activity. We also developed a muscle-specific lentiviral vector based on the synthetic C5-12 promoter and tested it on deficient myogenic satellite cells derived from a GSDII mouse model. GAA was expressed as a correctly processed protein allowing a complete enzymatic and metabolic correction in myoblasts and differentiated myotubes, as well as a significant mannose-6-phosphate (M6P)-dependent secretion reuptake by naive cells. Transduced cells showed lysosomal glycogen clearance, as demonstrated by electron microscopy. These results form the basis for a therapeutic approach of GSDII using lentiviral vector-mediated gene transfer into muscle stem cells.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Lentivirus/genética , Músculos/metabolismo , Animales , Línea Celular , Fibroblastos/enzimología , Fibroblastos/patología , Glucógeno/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Mioblastos/enzimología , Mioblastos/patología , Mioblastos/ultraestructura , Especificidad de Órganos , Receptor IGF Tipo 2/metabolismo , Transducción Genética , Inactivación de Virus , alfa-Glucosidasas/genética , alfa-Glucosidasas/uso terapéutico
5.
J Neurochem ; 96(6): 1572-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16441513

RESUMEN

Sandhoff disease, a neurodegenerative disorder characterized by the intracellular accumulation of GM2 ganglioside, is caused by mutations in the hexosaminidase beta-chain gene resulting in a hexosaminidase A (alphabeta) and B (betabeta) deficiency. A bicistronic lentiviral vector encoding both the hexosaminidase alpha and beta chains (SIV.ASB) has previously been shown to correct the beta-hexosaminidase deficiency and to reduce GM2 levels both in transduced and cross-corrected human Sandhoff fibroblasts. Recent advances in determining the neuropathophysiological mechanisms in Sandhoff disease have shown a mechanistic link between GM2 accumulation, neuronal cell death, reduction of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activity, and axonal outgrowth. To examine the ability of the SIV.ASB vector to reverse these pathophysiological events, hippocampal neurons from embryonic Sandhoff mice were transduced with the lentivector. Normal axonal growth rates were restored, as was the rate of Ca(2+) uptake via the SERCA and the sensitivity of the neurons to thapsigargin-induced cell death, concomitant with a decrease in GM2 and GA2 levels. Thus, we have demonstrated that the bicistronic vector can reverse the biochemical defects and down-stream consequences in Sandhoff neurons, reinforcing its potential for Sandhoff disease in vivo gene therapy.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/fisiología , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/genética , beta-N-Acetilhexosaminidasas/genética , Animales , Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Femenino , Gangliósido G(M2)/metabolismo , Genes/genética , Conos de Crecimiento/metabolismo , Hexosaminidasa A , Hipocampo/embriología , Hipocampo/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad de Sandhoff/terapia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA