Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 78(5): 975-985.e7, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32320643

RESUMEN

DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3'-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3'-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs.


Asunto(s)
Mapeo Cromosómico/métodos , Replicación del ADN/genética , Análisis de Secuencia de ADN/métodos , Cromatina , ADN/genética , Roturas del ADN de Cadena Simple , Daño del ADN/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Genoma/genética , Humanos , Nucleótidos , Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta Gen Subj ; 1862(10): 2152-2161, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30025855

RESUMEN

In the eukaryotic model yeast Saccharomyces cerevisiae, arsenic (As) detoxification is regulated by two transcriptional factors, Yap8 and Yap1. Yap8 specifically controls As extrusion from the cell, whether Yap1 avoids arsenic-induced oxidative damages. Accordingly, cells lacking both Yap1 and Yap8 are more sensitive to arsenate than cells lacking each regulator individually. Strikingly enough, the same sensitivity pattern was observed under anoxia, suggesting that Yap1 role in As detoxification might not be restricted to the regulation of the oxidative stress response. This finding prompted us to study the transcriptomic profile of wild-type and yap1 mutant cells exposed to arsenate. Interestingly, we found that, under such conditions, several genes involved in the biogenesis of FeS proteins were upregulated in a Yap1-dependent way. In line with this observation, arsenate treatment decreases the activity of the mitochondrial aconitase, Aco1, an FeS cluster-containing enzyme, this effect being even more pronounced in the yap1 mutant. Reinforcing the relevance of FeS cluster biogenesis in arsenate detoxification, the overexpression of several ISC and CIA machinery genes alleviates the deleterious effect of arsenate caused by the absence of Yap1 and Yap8. Altogether our data suggest that the upregulation of FeS biogenesis genes regulated by Yap1 might work as a cellular shield against arsenate toxicity.


Asunto(s)
Arseniatos/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Hierro-Azufre/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Proteínas Hierro-Azufre/efectos de los fármacos , Proteínas Hierro-Azufre/genética , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
3.
Biochim Biophys Acta ; 1833(5): 997-1005, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23295455

RESUMEN

Arsenic is a double-edge sword. On the one hand it is powerful carcinogen and on the other it is used therapeutically to treat acute promyelocytic leukemia. Here we report that arsenic activates the iron responsive transcription factor, Aft1, as a consequence of a defective high-affinity iron uptake mediated by Fet3 and Ftr1, whose mRNAs are drastically decreased upon arsenic exposure. Moreover, arsenic causes the internalization and degradation of Fet3. Most importantly, fet3ftr1 mutant exhibits increased arsenic resistance and decreased arsenic accumulation over the wild-type suggesting that Fet3 plays a role in arsenic toxicity. Finally we provide data suggesting that arsenic also disrupts iron uptake in mammals and the link between Fet3, arsenic and iron, can be relevant to clinical applications.


Asunto(s)
Arseniatos , Hierro/metabolismo , Saccharomyces cerevisiae , Animales , Arseniatos/efectos adversos , Arseniatos/metabolismo , Arseniatos/uso terapéutico , Ceruloplasmina/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Mamíferos , Proteínas de Transporte de Membrana/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
4.
Microbiology (Reading) ; 158(Pt 9): 2293-2302, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22745270

RESUMEN

Although arsenic is notoriously poisonous to life, its utilization in therapeutics brings many benefits to human health, so it is therefore essential to discover the molecular mechanisms underlying arsenic stress responses in eukaryotic cells. Aiming to determine the contribution of Ca(2+) signalling pathways to arsenic stress responses, we took advantage of the use of Saccharomyces cerevisiae as a model organism. Here we show that Ca(2+) enhances the tolerance of the wild-type and arsenic-sensitive yap1 strains to arsenic stress in a Crz1-dependent manner, thus providing the first evidence that Ca(2+) signalling cascades are involved in arsenic stress responses. Moreover, our results indicate that arsenic shock elicits a cytosolic Ca(2+) burst in these strains, without the addition of exogenous Ca(2+) sources, strongly supporting the notion that Ca(2+) homeostasis is disrupted by arsenic stress. In response to an arsenite-induced increase of Ca(2+) in the cytosol, Crz1 is dephosphorylated and translocated to the nucleus, and stimulates CDRE-driven expression of the lacZ reporter gene in a Cnb1-dependent manner. The activation of Crz1 by arsenite culminates in the induction of the endogenous genes PMR1, PMC1 and GSC2. Taken together, these data establish that activation of Ca(2+) signalling pathways and the downstream activation of the Crz1 transcription factor contribute to arsenic tolerance in the eukaryotic model organism S. cerevisiae.


Asunto(s)
Arsénico/toxicidad , Calcio/metabolismo , Proteínas de Unión al ADN/biosíntesis , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/biosíntesis , Cationes Bivalentes/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Activación Transcripcional
5.
Biochem J ; 414(2): 301-11, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18439143

RESUMEN

In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (gamma- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.


Asunto(s)
Arsénico/farmacología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Northern Blotting , Western Blotting , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Oxid Med Cell Longev ; 2012: 128647, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701145

RESUMEN

Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinson's, Alzheimer's, and Huntington's diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreich's ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.


Asunto(s)
Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Oxid Med Cell Longev ; 2012: 132146, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701754

RESUMEN

Alzheimer's (AD) and Parkinson's (PD) diseases are the two most common causes of dementia in aged population. Both are protein-misfolding diseases characterized by the presence of protein deposits in the brain. Despite growing evidence suggesting that oxidative stress is critical to neuronal death, its precise role in disease etiology and progression has not yet been fully understood. Budding yeast Saccharomyces cerevisiae shares conserved biological processes with all eukaryotic cells, including neurons. This fact together with the possibility of simple and quick genetic manipulation highlights this organism as a valuable tool to unravel complex and fundamental mechanisms underlying neurodegeneration. In this paper, we summarize the latest knowledge on the role of oxidative stress in neurodegenerative disorders, with emphasis on AD and PD. Additionally, we provide an overview of the work undertaken to study AD and PD in yeast, focusing the use of this model to understand the effect of oxidative stress in both diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Modelos Biológicos , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
PLoS One ; 6(1): e15976, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253609

RESUMEN

Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.


Asunto(s)
Proteínas de Unión al ADN/genética , Respuesta al Choque Térmico/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Clonación Molecular , Glucógeno Sintasa Quinasa 3/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Fosforilación , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA