Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430405

RESUMEN

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.


Asunto(s)
Amiloide , Muramidasa , Amiloide/metabolismo , Muramidasa/química , Ferritinas , Hierro/metabolismo
2.
Molecules ; 26(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443453

RESUMEN

Understanding the formation process and the spatial distribution of nanoparticle (NP) clusters on amyloid fibrils is an essential step for the development of NP-based methods to inhibit aggregation of amyloidal proteins or reverse the assembling trend of the proto-fibrillary complexes that prompts pathogenesis of neuro degeneration. For this, a detailed structural determination of the diverse hybrid assemblies that are forming is needed, which can be achieved by advanced X-ray scattering techniques. Using a combined solution small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) approach, this study investigates the intrinsic trends of the interaction between lysozyme amyloid fibrils (LAFs) and Fe3O4 NPs before and after fibrillization at nanometer resolution. AFM images reveal that the number of NP clusters interacting with the lysozyme fibers does not increase significantly with NP volume concentration, suggesting a saturation in NP aggregation on the fibrillary surface. The data indicate that the number of non-adsorbed Fe3O4 NPs is highly dependent on the timing of NP infusion within the synthesis process. SAXS data yield access to the spatial distribution, aggregation manner and density of NP clusters on the fibrillary surfaces. Employing modern data analysis approaches, the shape and internal structural morphology of the so formed nanocomposites are revealed. The combined experimental approach suggests that while Fe3O4 NPs infusion does not prevent the fibril-formation, the variation of NP concentration and size at different stages of the fibrillization process can impose a pronounced impact on the superficial and internal structural morphologies of these nanocomposites. These findings may be applicable in devising advanced therapeutic treatments for neurodegenerative diseases and designing novel bio-inorganic magnetic devices. Our results further demonstrate that modern X-ray methods give access to the structure of-and insight into the formation process of-biological-inorganic hybrid structures in solution.


Asunto(s)
Amiloide/química , Microscopía de Fuerza Atómica , Muramidasa/metabolismo , Nanocompuestos/química , Nanopartículas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Animales , Pollos , Modelos Moleculares , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura
3.
Biopolymers ; 111(2): e23342, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31794056

RESUMEN

We present colloidal nanocomposites formed by incorporating magnetite Fe3 O4 nanoparticles (MNPs) with lysozyme amyloid fibrils (LAFs). Preparation of two types of solutions, with and without addition of salt, was carried out to elucidate the structure of MNPs-incorporated fibrillary nanocomposites and to study the effect of the presence of salt on the stability of the nanocomposites. The structural morphology of the LAFs and their interaction with MNPs were analyzed by atomic force microscopy and small-angle x-ray scattering measurements. The results indicate that conformational properties of the fibrils are dependent on the concentration of protein, and the precise ratio of the concentration of the protein and MNPs is crucially important for the stability of the fibrillary nanocomposites. Our results confirm that despite the change in fibrillary morphology induced by the varying concentration of the protein, the adsorption of MNPs on the surface of LAF is morphologically independent. Moreover, most importantly, the samples containing salt have excellent stability for up to 1 year of shelf-life.


Asunto(s)
Amiloide/química , Nanopartículas de Magnetita/química , Muramidasa/química , Nanocompuestos/química , Nanopartículas de Magnetita/ultraestructura , Microscopía de Fuerza Atómica , Nanocompuestos/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959951

RESUMEN

We compare photoaligning properties of polymer layers fabricated from the same constituents: polymethyl-methacrylate (PMMA) and azo-dye Disperse Red 1 (DR1), either chemically attached to the PMMA main-chain, or physically mixed with it. Photoaligning properties depend on the preparation method drastically. Photoalignment was found to be far more efficient when PMMA is functionalized with DR1 compared to the case of physically mixing the constituents. This finding is supported by atomic force microscope (AFM) scans monitoring the light-induced changes at the polymer-air interface, and revealing a photoinduced mass transfer, especially in the case of functionalized PMMA.

5.
Nanoscale Adv ; 3(10): 2777-2781, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-36134179

RESUMEN

We demonstrate experimentally that the anchoring of a nematic liquid crystal on a solid substrate together with the anchoring of the liquid crystal on a nanoparticle surface induces orientational self-assembly of anisometric nanoparticles in liquid crystal droplets. The observed phenomenon opens a novel route for fabrication of thin colloidal films with tailored properties.

6.
Chemosphere ; 260: 127629, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32698117

RESUMEN

Polychlorinated biphenyls are synthetic industrial organic substances. These persistent pollutants occur in nature causing high ecological risks and damage to human health. Magnetoferritin nanoparticles composed of apoferritin protein shell surrounding synthetically prepared iron-based nanoparticles seem to be a promising candidate for polychlorinated biphenyls elimination. Properties of magnetoferritin, as a redox activity, a biocompatible character, high application possibilities and a close relationship with the human body promoted ours in vitro investigation of the magnetoferritin catalytic activity in the presence of representative 2,4,4'-trichlorobiphenyl. Basic physico-chemical properties of magnetoferritin were determined by ultraviolet and visible spectrophotometry, dynamic light scattering, zeta potential measurements, superconducting quantum interference device magnetometry and atomic force microscopy. The remediation effect of magnetoferritin on 2,4,4'-trichlorobiphenyl was demonstrated by the use of gas chromatography in combination with infrared spectroscopy.


Asunto(s)
Apoferritinas/química , Hierro/química , Óxidos/química , Bifenilos Policlorados/química , Contaminantes Ambientales , Humanos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA