Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Purinergic Signal ; 20(1): 47-64, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36964277

RESUMEN

Malignant gliomas are highly heterogeneous glia-derived tumors that present an aggressive and invasive nature, with a dismal prognosis. The multi-dimensional interactions between glioma cells and other tumor microenvironment (TME) non-tumoral components constitute a challenge to finding successful treatment strategies. Several molecules, such as extracellular purines, participate in signaling events and support the immunosuppressive TME of glioma patients. The purinergic signaling and the ectoenzymes network involved in the metabolism of these extracellular nucleotides are still unexplored in the glioma TME, especially in lower-grade gliomas (LGG). Also, differences between IDH-mutant (IDH-Mut) versus wild-type (IDH-WT) gliomas are still unknown in this context. For the first time, to our knowledge, this study characterizes the TME of LGG, high-grade gliomas (HGG) IDH-Mut, and HGG IDH-WT patients regarding purinergic ectoenzymes and P1 receptors, focusing on tumor-infiltrating lymphocytes. Here, we show that ectoenzymes from both canonical and non-canonical pathways are increased in the TME when compared to the peripheral blood. We hypothesize this enhancement supports extracellular adenosine generation, hence increasing TME immunosuppression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patología , Linfocitos Infiltrantes de Tumor/patología , Isocitrato Deshidrogenasa/genética , Glioma/patología , Pronóstico , Mutación , Microambiente Tumoral
2.
Purinergic Signal ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906424

RESUMEN

Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions. In cancer, this signaling is mainly controlled by the enzymatic cascade involving the NTPDase/E-NPP family and ecto-5'-nucleotidase/CD73, which hydrolyze extracellular adenosine triphosphate (ATP) to adenosine (ADO). The aim of this work is to evaluate the activity of BZP in the purinergic system in BC cell lines and to compare its in vitro antitumor activity with cisplatin, a chemotherapeutic drug widely used in the treatment of BC. In this study, two different BC cell lines, grade 1 RT4 and the more aggressive grade 3 T24, were used along with a human fibroblast cell line MRC-5, a cell used to predict the selectivity index (SI). BZP shows strong antitumor activity, with notable IC50 values (8.7 ± 0.9 µM for RT4; 6.7 ± 0.7 µM for T24), far from the SI for cisplatin (SI for BZP: 19.7 and 25.7 for RT4 and T24, respectively; SI for cisplatin: 1.7 for T24). BZP arrests T24 cells in the G2/M phase of the cell cycle, inducing early apoptosis. Moreover, BZP increases ATP and ADP hydrolysis and gene/protein expression of the NPP1 enzyme in the T24 cell line. In conclusion, BZP shows superior activity compared to cisplatin against BC cell lines in vitro.

3.
Mol Cell Biochem ; 477(8): 2047-2057, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429327

RESUMEN

As alterations in purinergic signaling have been observed in bladder diseases, we aimed to assess the potential prognostic role of purinergic receptors in bladder cancer in a translational approach based on clinical databases and in vitro data. The prognostic role of purinergic receptors in the survival of patients with bladder cancer and the expression profile of the altered P2 receptors in normal and in tumor samples were determined using The Cancer Genome Atlas databank. In T24 and RT4 human bladder cancer cell lines, the P2 purinergic receptors were characterized by RT-PCR and RT-qPCR analysis including radiotherapy exposure as treatment. The cell number and the cumulative population doubling were also assessed. The expression profile of P2X6 receptor in the cancer pathological stage and in the nodal metastasis status was in agreement with Kaplan-Meier analysis, indicating that high expression of this receptor was related to an increased survival rate in patients with bladder cancer. Of all the P2 receptors expressed on T24 cell line, P2X6 presented high expression after radiotherapy, while it was not altered in RT4 cells. In addition, irradiation promoted a decrease of T24 cell number, but did not change the cell number of RT4 after the same time and radiation dose. Along 7 days after irradiation exposure, both cells regrew. However, while P2X6 receptor was downregulated in T24 cells, it was upregulated in RT4 cells. Our findings indicated that high P2X6 receptor expression induced by radiation in T24 cell line may predict a good survival prognostic factor.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Línea Celular Tumoral , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal , Neoplasias de la Vejiga Urinaria/patología
4.
Purinergic Signal ; 18(2): 211-222, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35235138

RESUMEN

The risk stratification of B-acute lymphoblastic leukemia (B-ALL) is based on clinical and biological factors. However, B-ALL has significant biological and clinical heterogeneity and 50% of B-ALL patients do not have defined prognostic markers. In this sense, the identification of new prognostic biomarkers is necessary. Considering different cohorts of childhood B-ALL patients, gene (DPP4/CD38/ENTPD1/NT5E) and protein (CD38/CD39/CD73) expressions of ectonucleotidases were analyzed in silico and ex vivo and the association with prognosis was established. In univariate analyses, expression of NT5E was significantly associated with worse progression-free survival (PFS) in bone marrow (BM) samples. In multivariate analyses, Kaplan-Meier analysis, and log-rank test, higher NT5E expression predicted unfavorable PFS in BM samples. Considering minimal residual disease (MRD), higher levels of cellularity were associated with the high NT5E expression at day 8 of induction therapy. In addition, we observed that white blood cells (WBC) of childhood B-ALL patients had more CD38 compared to the same cell population of healthy donors (HD). In fact, MRD > 0.1% patients had higher CD38 protein expression on WBC in comparison to HD. Noteworthy, we observed higher CD38 expression on WBC than blasts in MRD > 0.1% patients. We suggest that NT5E gene and CD38 protein expression, of the ectonucleotidases family, could provide interesting prognostic biomarkers for childhood B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , 5'-Nucleotidasa/genética , Biomarcadores , Citometría de Flujo , Proteínas Ligadas a GPI , Humanos , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico
5.
Exp Physiol ; 106(4): 1024-1037, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624912

RESUMEN

NEW FINDING: What is the central question of this study? How does moderate-intensity aerobic exercise affect the behaviour of purinergic enzymes in sedentary, overweight and physically active subjects? What is the relationship between purinergic and inflammatory responses triggered by exercise? What is the main finding and its importance? Moderate-intensity aerobic exercise modifies the activity of purinergic enzymes and the levels of nucleotides and nucleosides. These results are similar in subjects with different biological characteristics. 5'-Nucleotidase activity and adenosine levels are associated with inflammatory responses. This study suggests that a purinergic pathway is related to the inflammatory responses triggered by exercise. ABSTRACT: Purinergic signalling is a mechanism of extracellular communication that modulates events related to exercise, such as inflammation and coagulation. Herein, we evaluated the effects of acute moderate-intensity exercise on the activities of purinergic enzymes and plasma levels of adenine nucleotides in individuals with distinct metabolic characteristics. We analysed the relationship between purinergic parameters, inflammatory responses and cardiometabolic markers. Twenty-four healthy males were assigned to three groups: normal weight sedentary (n = 8), overweight sedentary (n = 8) and normal weight physically active (n = 8). The volunteers performed an acute session of moderate-intensity aerobic exercise on a treadmill at 70% of V̇O2peak ; blood samples were drawn at baseline, immediately post-exercise and at 1 h post-exercise. Immediately post-exercise, all subjects showed increases in ATP, ADP, AMP and p-nitrophenyl thymidine 5'-monophosphate hydrolysis, while AMP hydrolysis remained increased at 1 h after exercise. High-performance liquid chromatography analysis demonstrated lower levels of ATP and ADP at post- and 1 h post-exercise in all groups. Conversely, adenosine and inosine levels increased at post-exercise, but only adenosine remained augmented at 1 h after exercise in all groups. With regard to inflammatory responses, the exercise protocol increased tumour necrosis factor α (TNF-α) and interleukin 8 (IL-8) concentrations in all subjects, but only TNF-α remained elevated at 1 h after exercise. Significant correlations were found between the activity of 5'-nucleotidase, adenosine levels, V̇O2peak , triglyceride, TNF-α and IL-8 levels. Our findings suggest a purinergic signalling pathway that participates, at least partially, in the inflammatory responses triggered by acute moderate-intensity exercise. The response of soluble nucleotidases to acute moderate exercise appears to be similar between subjects of different biological profiles.


Asunto(s)
Ejercicio Físico , Sobrepeso , Adenosina , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Inflamación , Masculino
6.
Purinergic Signal ; 17(2): 273-284, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745072

RESUMEN

Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Antiinflamatorios no Esteroideos/farmacología , Antimetabolitos Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Metotrexato/farmacología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Antimetabolitos Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioblastoma/patología , Glioma/patología , Masculino , Metotrexato/uso terapéutico , Monocitos/efectos de los fármacos , Ratas , Ratas Wistar
7.
Pharm Res ; 37(6): 91, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385723

RESUMEN

PURPOSE: Bevacizumab (BCZ) is a recombinant monoclonal antibody that inhibits the biological activity of the vascular endothelial growth factor, which has an important role in angiogenesis for tumoral growth and progression. In this way, our objective was to develop chitosan-coated lipid-core nanocapsules functionalized with BCZ by an organometallic complex using gold-III. METHODS: The formulation was produced and characterized in relation to physicochemical characteristics. Furthermore, the antitumoral and antiangiogenic activities were evaluated against C6 glioma cell line and chicken embryo chorioallantoic membrane (CAM), respectively. RESULTS: Final formulation showed nanometric size, narrow polydispersity, positive zeta potential and gold clusters size lower than 2 nm. BCZ in aqueous solution (0.01-0.10 µmol L-1) did not show cytotoxic activity in vitro against C6 glioma cell line; although, MLNC-Au-BCZ showed cytotoxicity with a median inhibition concentration of 30 nmol L-1 of BCZ. Moreover, MLNC-Au-BCZ demonstrated cellular internalization dependent on incubation time and BCZ concentration. BCZ solution did not induce significant apoptosis as compared to MLNC-Au-BCZ within 24 h of treatment. CAM assay evidenced potent antiangiogenic activity for MLNC-Au-BCZ, representing a decrease of 5.6 times in BCZ dose comparing to BCZ solution. CONCLUSION: MLNC-Au-BCZ is a promising product for the treatment of solid tumors.


Asunto(s)
Inhibidores de la Angiogénesis/química , Bevacizumab/química , Quitosano/química , Glioma/tratamiento farmacológico , Oro/química , Lípidos/química , Nanocápsulas/química , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Bevacizumab/metabolismo , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Composición de Medicamentos/métodos , Hexosas/química , Humanos , Lectinas de Plantas/química , Polisorbatos/química , Proteínas de Soja/química , Propiedades de Superficie , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Adv Exp Med Biol ; 1202: 87-108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32034710

RESUMEN

Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X7, is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Glioma/metabolismo , Glioma/patología , Receptores Purinérgicos/metabolismo , Transducción de Señal , Nucleótidos de Adenina/metabolismo , Animales , Humanos
9.
Purinergic Signal ; 15(1): 95-105, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644036

RESUMEN

Prostate cancer is among the major malignancies that affect men around the world. Adenine nucleotides are important signaling molecules that mediate innumerous biological functions in pathophysiological conditions, including cancer. These molecules are degraded by several ectoenzymes named ectonucleotidases that produce adenosine in the extracellular medium. Some of these ecto-enzymes can be found in soluble in the blood stream. Thus, the present study aimed to evaluate the hydrolysis of adenine nucleotides (ATP, ADP, and AMP) in the plasma blood of patients with prostate cancer. Peripheral blood samples were collected, and questionnaires were filled based on the clinical data of the medical records. The nucleotide hydrolysis was performed by Malachite Green method using ATP, ADP, and AMP as substrates. Plasma from prostate cancer patients presented an elevated hydrolysis of all nucleotides evaluated when compared to healthy individuals. NTPDase inhibitor (ARL67156) and the alkaline phosphatase inhibitor (levamisole) did not alter ATP hydrolysis. However, AMP hydrolysis was reduced by the CD73 inhibitor, APCP, and by levamisole, suggesting the action of a soluble form of CD73 and alkaline phosphatase. On microvesicles, it was observed that there was a low expression and activity of CD39 and almost absent of CD73. The correlation of ATP, ADP, and AMP hydrolysis with clinic pathological data demonstrated that patients who received radiotherapy showed a higher AMP hydrolysis than those who did not, and patients with lower clinical stage (CS-IIA) presented an elevated ATP hydrolysis when compared to those with more advanced clinical stages (CS-IIB and CS-III). Patients of all clinical stages presented an elevated AMPase activity. Therefore, we can suggest that the nucleotide hydrolysis might be attributed to soluble ecto-enzymes present in the plasma, which, in a coordinate manner, produce adenosine in the blood stream, favoring prostate cancer progression.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Biomarcadores de Tumor/sangre , Neoplasias de la Próstata/sangre , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Humanos , Hidrólisis , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/patología
10.
Cytometry A ; 93(2): 232-238, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29364561

RESUMEN

NTPDase2, a member of the CD39/NTPDase family, is an ecto-nucleotidase anchored to the plasma membrane by two transmembrane domains, with a catalytic site facing the extracellular space and preferentially hydrolyzing nucleoside triphosphates. While NTPDase2 is expressed in many cell types, its unique functionality, mobility and dynamics at the cell membrane remain unexplored. We therefore constructed a recombinant NTPDase2 linked to the yellow fluorescent protein (EYFP) to investigate its dynamics by confocal microscopy. The present study shows that the expression of EYFP-NTPDase2 in different cell lines does not affect its proliferation, migration and adhesion to extracellular matrices (ECM). Moreover, in human embryonic kidney cells 293 (HEK293) grown on collagen type I and fibronectin, EYFP-NTPDase2 fluorescence is greater in free plasma membrane regions than in cell-cell contacts, in comparison with cells grown on other substrates. Differences in the time required for fluorescence recovery after photobleaching (FRAP) in free membrane regions and cell-cell contacts indicate that the mobility of EYFP-NTPDase2 depends on the matrix to which the cells are attached. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos
11.
Mol Cell Biochem ; 426(1-2): 55-63, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27854073

RESUMEN

Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.


Asunto(s)
Adenosina Difosfato/sangre , Adenosina Monofosfato/sangre , Adenosina Trifosfato/sangre , Ejercicio Físico , Adulto , Humanos , Hidrólisis , Masculino
12.
J Cell Biochem ; 116(5): 721-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25546398

RESUMEN

Macrophages are involved in cancer progression. M1 macrophages have an antitumor effect, whereas M2 phenotype are associated with tumor growth. The progression of gliomas involves the participation of an inflammatory microenvironment. Adenosine triphosphate (ATP) can act as pro-inflammatory signal, whereas adenosine has opposite properties. The biological effects of extracellular nucleotides/nucleosides mediated by purinergic receptors are controlled by ectonucleotidases. In the present work, we evaluated whether glioma-conditioned medium (GL-CM) modulates macrophage differentiation and the participation of ATP and adenosine in the release of pro-and anti-inflammatory cytokines by these cells. The results show that macrophages exposed to GL-CM were modulated to an M2-like phenotype. HPLC analysis of GL-CM demonstrated the presence of significant amounts of ATP and its metabolites. Macrophages exposed to GL-CM presented decreased ATP and AMP hydrolysis and increased IL-10 and MCP-1 secretion, effects that were diminished by P1 or P2 antagonists. GL-CM did not alter the release of IL-6 by macrophages, although treatment with ATP promoted an increase in the release of IL-6, which was prevented by a P2X7 antagonist. In summary, we found that A2A and P2X7 activation is necessary for IL-10, MCP-1, and IL-6 release by macrophages exposed to GL-CM, which, in turn, modulates the macrophages to M2-phenotype. The present study establishes a relationship between M2-like polarization, cytokine release and purinergic receptor activation in macrophages exposed to GL-CM. Therefore, the data presented herein contributes to advancing in the field of cancer-related inflammation and point specific purinergic receptors as targets for modulation of the phenotype of glioma-associated macrophages.


Asunto(s)
Quimiocina CCL2/metabolismo , Glioma/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores Purinérgicos/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Receptor de Adenosina A2A/metabolismo , Receptores Purinérgicos P2X7/metabolismo
13.
Purinergic Signal ; 11(4): 463-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26265456

RESUMEN

Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1ß. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1ß, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1ß secretion by murine macrophages. Hcy (100 µM) increases IL-1ß synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent N-acetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1ß production in Hcy-exposed macrophages, indicating the importance of ROS in this pro-inflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1ß via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.


Asunto(s)
Homocisteína/toxicidad , Hiperhomocisteinemia/metabolismo , Interleucina-1beta/biosíntesis , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/metabolismo , FN-kappa B/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/genética
14.
Purinergic Signal ; 10(3): 421-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24464643

RESUMEN

According to the World Health Organization, bladder cancer is the seventh most common cancer among men in the world. The current treatments for this malignancy are not efficient to prevent the recurrence and progression of tumors. Then, researches continue looking for better therapeutic targets which can end up in new and more efficient treatments. One of the recent findings was the identification that the purinergic system was involved in bladder tumorigenesis. The ectonucleotidases, mainly ecto-5'-nucleotidase/CD73 have been revealed as new players in cancer progression and malignity. In this work, we investigated the NTPDase3 and ecto-5'-nucleotidase/CD73 expression in cancer progression in vivo. Bladder tumor was induced in mice by the addition of 0.05 % of N-butyl-N-(hydroxybutyl)-nitrosamine (BBN) in the drinking water for 4, 8, 12, 18, and 24 weeks. After this period, mice bladders were removed for histopathology analysis and immunofluorescence assays. The bladder of animals which has received BBN had alterations, mainly inflammation, in initial times of tumor induction. After 18 weeks, mice's bladder has developed histological alterations similar to human transitional cell carcinoma. The cancerous urothelium, from mice that received BBN for 18 and 24 weeks, presented a weak immunostaining to NTPDase3, in contrast to an increased expression of ecto-5'-nucleotidase/CD73. The altered expression of NTPDase3 and ecto-5'-nucleotidase/CD73 presented herein adds further evidence to support the idea that alterations in ectonucleotidases are involved in bladder tumorigenesis and reinforce the ecto-5'-nucleotidase/CD73 as a future biomarker and/or a target for pharmacological therapy of bladder cancer.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Pirofosfatasas/biosíntesis , Neoplasias de la Vejiga Urinaria/enzimología , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Vejiga Urinaria/patología
15.
Eur J Pharmacol ; 966: 176328, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237714

RESUMEN

In 2020, breast cancer (BC) has surpassed lung cancer as the most diagnosed cancer in the world. Tumor microenvironment (TME) plays a critical role in resistance to standard therapies and tumor progression. Two key factors within the TME include adenosine, an immunosuppressive molecule, and glucose, which serves as the primary energy source for tumor cells. In this scenario, inhibiting the purinergic pathway and glucose uptake might be a promising strategy. Therefore, we sought to evaluated different treatment approaches in BC cells (Dapagliflozin, a SGLT2 inhibitor; Paclitaxel, the standard chemotherapy for BC; and ARL67156/APCP, inhibitors of CD39 and CD73, respectively). The expression of some membrane markers relevant to resistance was assessed. BC cell-lines (MCF-7 and MDA-MB-231) were co-treated and cell viability, cell cycle, and annexin/PI assays were performed. Our analysis showed promising results, where the combination of these compounds led to cell death by apoptosis/necrosis and cell cycle arrest. Dapagliflozin showed more impact on early apoptosis, whereas Paclitaxel led to late apoptosis/necrosis as the main mechanism of cell death. Inhibiting purinergic signaling also contributed to reducing cell viability together with the other drugs, suggesting it could have an influence on breast cancer survival mechanisms. Indeed, the overexpression of the NT5E gene in patients with ER+ tumors is strongly associated with reduced overall survival and progression-free interval. However, more studies are needed to fully understand the interactions and mechanism underlying these co-treatment multi-targeting approaches.


Asunto(s)
Compuestos de Bencidrilo , Neoplasias de la Mama , Glucósidos , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Paclitaxel/farmacología , Apoptosis , Necrosis , Proliferación Celular , Microambiente Tumoral
16.
Toxicol Appl Pharmacol ; 272(3): 681-9, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23933163

RESUMEN

The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 µM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1ß, TNF-α, COX-2 and PGE2. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae.


Asunto(s)
Cobre/toxicidad , Estrés Oxidativo/efectos de los fármacos , Nucleósidos de Purina/fisiología , Nucleótidos de Purina/fisiología , Animales , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/fisiopatología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Estrés Oxidativo/fisiología , Pez Cebra/embriología
17.
Adv Exp Med Biol ; 986: 81-102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22879065

RESUMEN

Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X(7), is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Purinas/metabolismo , Transducción de Señal , Animales , Neoplasias Encefálicas/metabolismo , Progresión de la Enfermedad , Glioma/metabolismo , Humanos
18.
Eur J Med Chem ; 247: 115052, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599229

RESUMEN

The purinergic signaling has drawn attention from academia and more recently from pharmaceutical industries as a potential therapeutic route for cancer treatment, since ATP may act as chemotactic agent and possess in vitro antineoplastic activity. On the other way, adenosine, produced in extracellular medium by ecto-5'-NT, acts as immunosuppressor and is related to neoangiogenesis, vasculogenesis and evasion to the immune system. Consequently, inhibitors of ecto-5'-NT may prevent tumor progression, reducing adenosine concentrations, preventing escape from the host's immune system and slowing cancer's growth. This review aims to highlight important biochemical and structural features of ecto-5'NT, highlight its expression profile in normal and cancer cell lines detailing compounds which may act as expression regulators and to review the several classes of ecto-5'NT inhibitors developed in the past 12 years, in order to build a general structure-activity relationship model to guide further compound design.


Asunto(s)
5'-Nucleotidasa , Antineoplásicos , Adenosina/farmacología , Adenosina/metabolismo , Adenosina Monofosfato , Antineoplásicos/farmacología , Línea Celular
19.
Cell Stress Chaperones ; 28(6): 721-729, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462825

RESUMEN

Being overweight is already considered a metabolic risk factor, which can be overcome by increasing cardiorespiratory fitness (CRF). Acute exercise is known to induce changes in plasma hormones and heat shock proteins release. However, there is a lack of studies investigating the impact of body composition and CRF on these variables following acute aerobic exercise. To assess the influence of body composition and cardiorespiratory fitness on plasma heat shock protein 72 kDa (HSP72), norepinephrine (NE), insulin, and glucose responses to an acute aerobic exercise bout in the fed state. Twenty-four healthy male adults were recruited and allocated into three groups: overweight sedentary (n = 8), normal weight sedentary (n = 8), and normal weight active (n = 8). The volunteers performed an acute moderate exercise session on a treadmill at 70% of VO2 peak. Blood samples were drawn at baseline, immediately post-exercise, and at 1-h post-exercise. The exercise session did not induce changes in HSP72 nor NE but changes in glucose and insulin were affected by body mass index. Also, subjects with elevated CRF maintain reduced NE through exercise. At baseline, the overweight sedentary group showed elevated NE, insulin, and glucose; these last two impacting the HOMA-IR index. Thirty minutes of aerobic exercise at 70% VO2 peak, in the fed state, did not change the levels of plasma NE and HSP72. Elevated body composition seems to impact metabolic profile and increase sympathetic activity. Conversely, subjects with increased cardiorespiratory fitness seem to have attenuated sympathetic activity.


Asunto(s)
Capacidad Cardiovascular , Insulina , Adulto , Humanos , Masculino , Sobrepeso , Glucosa , Proteínas del Choque Térmico HSP72 , Capacidad Cardiovascular/fisiología , Norepinefrina , Ejercicio Físico/fisiología , Composición Corporal
20.
Chem Biol Drug Des ; 102(3): 536-546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37272688

RESUMEN

Bladder cancer is the fourth most common malignancy in men. It can present along the entire continuum of severity, from mild to well-differentiated disease to extremely malignant tumors with low survival rates. Human RAS genes are the most frequently mutated oncogenes in human cancers, and the critical role of aberrant Ras protein function in carcinogenesis is well established. Therefore, considerable efforts have been devoted to the development of anti-Ras inhibitors for cancer treatment. This study presents the biphenyl dihydropyrimidinone LaSOM 335 with high activity against T24 bladder cancer cells (IC50 = 10.73 ± 0.53 µM) and selectivity of cytotoxicity for this cancer cell line compared to two non-cancer cell lines investigated. Furthermore, we also show that this compound reduced vulvar development in the mutant let-60 gene of Caenorhabditis elegans. Let-60 is a homolog of the mammalian Ras gene. In addition, we observed that LaSOM 335 inhibits the enzymatic activity of CD73 and decreases CD73 expression. Possibly, this expression decrease is due to downstream EGFR signaling via the Ras-Raf-ERK pathway, that directly regulates CD73 expression via ERK1/2. Evidence suggests that non-immunomodulating functions of CD73 play an equally important role for cancer cell survival, progression, and migration. Regarding we also notice that LaSOM 335 was safe in the in vivo model of C. elegans. The set of these findings makes this biphenyl dihydropyrimidinone a promising candidate for further investigations in the bladder cancer field.


Asunto(s)
Genes ras , Neoplasias de la Vejiga Urinaria , Masculino , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA