Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(21): E4843-E4852, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735654

RESUMEN

The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1ß and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1ß and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1ß in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1ß and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1ß-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1ß, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.


Asunto(s)
Interleucina-1beta/farmacología , Receptores Tipo I de Interleucina-1/fisiología , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Nervio Vago/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Teorema de Bayes , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Nervio Vago/citología , Nervio Vago/efectos de los fármacos
2.
Bioelectron Med ; 3: 7-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30003120

RESUMEN

The axons of the sensory, or afferent, vagus nerve transmit action potentials to the central nervous system in response to changes in the body's metabolic and physiological status. Recent advances in identifying neural circuits that regulate immune responses to infection, inflammation and injury have revealed that vagus nerve signals regulate the release of cytokines and other factors produced by macrophages. Here we record compound action potentials in the cervical vagus nerve of adult mice and reveal the specific activity that occurs following administration of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin 1ß (IL-1ß). Importantly, the afferent vagus neurograms generated by TNF exposure are abolished in double knockout mice lacking TNF receptors 1 and 2 (TNF-R1/2KO), whereas IL-1ß-specific neurograms are eliminated in knockout mice lacking IL-1ß receptor (IL-1RKO). Conversely, TNF neurograms are preserved in IL-1RKO mice, and IL-1ß neurograms are unchanged in TNF-R1/2KO mice. Analysis of the temporal dynamics and power spectral characteristics of afferent vagus neurograms for TNF and IL-1ß reveals cytokine-selective signals. The nodose ganglion contains the cell bodies of the sensory neurons whose axons run through the vagus nerve. The nodose neurons express receptors for TNF and IL-1ß, and we show that exposing them to TNF and IL-1ß significantly stimulates their calcium uptake. Together these results indicate that afferent vagus signals in response to cytokines provide a basic model of nervous system sensing of immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA