Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 469, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243798

RESUMEN

BACKGROUND: Melanoma is the deadliest form of skin cancer and metastatic disease is associated with a significant survival rate drop. There is an urgent need for consistent tumor biomarkers to scale precision medicine and reduce cancer mortality. Here, we aimed to identify a melanoma-specific circulating microRNA signature and assess its value as a diagnostic tool. METHODS: The study consisted of a discovery phase and two validation phases. Circulating plasma extracellular vesicles (pEV) associated microRNA profiles were obtained from a discovery cohort of metastatic melanoma patients and normal subjects as controls. A pEV-microRNA signature was obtained using a LASSO penalized logistic regression model. The pEV-microRNA signature was subsequently validated both in a publicly available dataset and in an independent internal cohort. RESULTS: We identified and validated in three independent cohorts a panel of melanoma-specific circulating microRNAs that showed high accuracy in differentiating melanoma patients from healthy subjects with an area under the curve (AUC) of 1.00, 0.94 and 0.75 respectively. Investigation of the function of the pEV-microRNA signature evidenced their possible immune suppressive role in melanoma patients. CONCLUSIONS: We demonstrate that a blood test based on circulating microRNAs can non-invasively detect melanoma, offering a novel diagnostic tool for improving standard care. Moreover, we revealed an immune suppressive role for melanoma pEV-microRNAs.


Asunto(s)
MicroARN Circulante , Melanoma , MicroARNs , Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Humanos , Biopsia Líquida , Melanoma/diagnóstico , Melanoma/genética , MicroARNs/genética
2.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806476

RESUMEN

The growing knowledge on several classes of non-coding RNAs (ncRNAs) and their different functional roles has aroused great interest in the scientific community. Beyond the Central Dogma of Biology, it is clearly known that not all RNAs code for protein products, and they exert a broader repertoire of biological functions. As described in this review, ncRNAs participate in gene expression regulation both at transcriptional and post-transcriptional levels and represent critical elements driving and controlling pathophysiological processes in multicellular organisms. For this reason, in recent years, a great boost was given to ncRNA-based strategies with potential therapeutic abilities, and nowadays, the use of RNA molecules is experimentally validated and actually exploited in clinics to counteract several diseases. In this review, we summarize the principal classes of therapeutic ncRNA molecules that are potentially implied in disease onset and progression, which are already used in clinics or under clinical trials, highlighting the advantages and the need for a targeted therapeutic strategy design. Furthermore, we discuss the benefits and the limits of RNA therapeutics and the ongoing development of delivery strategies to limit the off-target effects and to increase the translational application.


Asunto(s)
MicroARNs , ARN no Traducido , Regulación de la Expresión Génica , MicroARNs/genética , ARN no Traducido/genética , ARN no Traducido/uso terapéutico
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055098

RESUMEN

Heterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine regulation of cellular reprogramming, specifically in epithelial-mesenchymal transition (EMT), remain largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by molecular analysis that in hepatocytes it acts as a "mesenchymal" gene, being induced by TGFß and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and maintains the epithelial phenotype. Notably, in HCC invasive cells, SYNCRIP knockdown induces a mesenchymal-epithelial transition (MET), negatively regulating their mesenchymal phenotype and significantly impairing their migratory capacity. In exploring possible molecular mechanisms underlying these observations, we identified a set of miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p, miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously shown to exert pro- or anti-EMT activities, significantly impacted by SYNCRIP interference during EMT/MET dynamics and gathered insights, suggesting the possible involvement of this RNA binding protein in their transcriptional regulation.


Asunto(s)
Carcinoma Hepatocelular/etiología , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Hepatocitos/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Neoplasias Hepáticas/etiología , Animales , Biomarcadores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatocitos/patología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , MicroARNs/genética , Fenotipo , Interferencia de ARN , Proteínas de Unión al ARN
4.
J Hepatol ; 75(6): 1301-1311, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34271004

RESUMEN

BACKGROUND & AIMS: Patients with HCV who achieve a sustained virological response (SVR) on direct-acting antiviral (DAA) therapy still need to be monitored for signs of liver disease progression. To this end, the identification of both disease biomarkers and therapeutic targets is necessary. METHODS: Extracellular vesicles (EVs) purified from plasma of 15 healthy donors (HDs), and 16 HCV-infected patients before (T0) and after (T6) DAA treatment were utilized for functional and miRNA cargo analysis. EVs purified from plasma of 17 HDs and 23 HCV-infected patients (T0 and T6) were employed for proteomic and western blot analyses. Functional analysis in LX2 cells measured fibrotic markers (mRNAs and proteins) in response to EVs. Structural analysis was performed by qPCR, label-free liquid chromatography-mass spectrometry and western blot. RESULTS: On the basis of observations indicating functional differences (i.e. modulation of FN-1, ACTA2, Smad2/3 phosphorylation, collagen deposition) of plasma-derived EVs from HDs, T0 and T6, we performed structural analysis of EVs. We found consistent differences in terms of both miRNA and protein cargos: (i) antifibrogenic miR204-5p, miR181a-5p, miR143-3p, miR93-5p and miR122-5p were statistically underrepresented in T0 EVs compared to HD EVs, while miR204-5p and miR143-3p were statistically underrepresented in T6 EVs compared to HD EVs (p <0.05); (ii) proteomic analysis highlighted, in both T0 and T6, the modulation of several proteins with respect to HDs; among them, the fibrogenic protein DIAPH1 was upregulated (Log2 fold change of 4.4). CONCLUSIONS: Taken together, these results highlight structural EV modifications that are conceivably causal for long-term liver disease progression in patients with HCV despite DAA-mediated SVR. LAY SUMMARY: Direct-acting antivirals lead to virological cure in the majority of patients with chronic hepatitis C virus infection. However, the risk of liver disease progression or complications in patients with fibrosis and cirrhosis remains in some patients even after virological cure. Herein, we show that extracellular vesicle modifications could be linked to long-term liver disease progression in patients who have achieved virological cure; these modifications could potentially be used as biomarkers or treatment targets in such patients.


Asunto(s)
Antivirales/farmacología , Hepacivirus/fisiología , Hepatitis C/tratamiento farmacológico , Respuesta Virológica Sostenida , Antivirales/uso terapéutico , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Hepatitis C/fisiopatología , Humanos , Espectrometría de Masas/métodos , Espectrometría de Masas/estadística & datos numéricos
5.
Liver Int ; 38(10): 1741-1750, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29359389

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is known to cause major alterations in the cross-talk between hepatic and immune cells thus contributing to the liver disease pathogenesis. Extracellular vesicles have been proved to act as major players in cell-cell communication, and their cargo changes in relation to pathophysiological states. The aim of this study was to evaluate the effects of chronic HCV infection and direct-acting antivirals (DAA) on exosome-delivered microRNAs and on their ability to modulate the innate immune response. METHODS: Exosomes isolated from the plasma of healthy donors and naïve, viremic HCV patients before and after DAA treatment have been compared for their microRNAs cargo by quantitative polymerase chain reaction. Functional assays with peripheral blood cells from healthy donors were performed to assess exosome-mediated immune responses. RESULTS: MicroRNAs associated with HCV-related immunopathogenesis which were found to be enriched in exosomes of HCV viremic patients (in particular, miR-122-5p, miR-222-3p, miR-146a, miR-150-5p, miR-30c, miR-378a-3p and miR-20a-5p) were markedly reduced by DAA therapy. This exosome-microRNA cargo modulation parallels changes in their immunomodulatory properties in ex vivo experiments. Exosomes from HCV patients inhibit NK degranulation activity and this effect correlates with miR-122-5p or miR-222-3p levels. CONCLUSIONS: Enrichment of immunomodulatory microRNAs in exosomes of HCV patients was correlated with their inhibitory activity on innate immune cells function. Direct-acting antivirals (DAA) treatment was observed to revert both microRNA content and functional profiles of systemic exosomes towards those of healthy donors. Exosome-associated microRNAs may provide valuable biomarkers to monitor immune response recovery.


Asunto(s)
Antivirales/farmacología , Exosomas/inmunología , Hepatitis C Crónica/tratamiento farmacológico , MicroARNs/inmunología , Adulto , Anciano , Biomarcadores , Estudios de Casos y Controles , Comunicación Celular , Femenino , Perfilación de la Expresión Génica , Hepacivirus/genética , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad
6.
Biochim Biophys Acta ; 1849(8): 919-29, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26003733

RESUMEN

BACKGROUND AND AIMS: Epithelial-to-mesenchymal transition (EMT) and the reverse mesenchymal-to-epithelial transition (MET) are manifestations of cellular plasticity that imply a dynamic and profound gene expression reprogramming. While a major epigenetic code controlling the coordinated regulation of a whole transcriptional profile is guaranteed by DNA methylation, DNA methyltransferase (DNMT) activities in EMT/MET dynamics are still largely unexplored. Here, we investigated the molecular mechanisms directly linking HNF4α, the master effector of MET, to the regulation of both de novo of DNMT 3A and 3B. METHODS: Correlation among EMT/MET markers, microRNA29 and DNMT3s expression was evaluated by RT-qPCR, Western blotting and immunocytochemical analysis. Functional roles of microRNAs and DNMT3s were tested by anti-miRs, microRNA precursors and chemical inhibitors. ChIP was utilized for investigating HNF4α DNA binding activity. RESULTS: HNF4α silencing was sufficient to induce positive modulation of DNMT3B, in in vitro differentiated hepatocytes as well as in vivo hepatocyte-specific Hnf4α knockout mice, and DNMT3A, in vitro, but not DNMT1. In exploring the molecular mechanisms underlying these observations, evidence have been gathered for (i) the inverse correlation between DNMT3 levels and the expression of their regulators miR-29a and miR-29b and (ii) the role of HNF4α as a direct regulator of miR-29a-b transcription. Notably, during TGFß-induced EMT, DNMT3s' pivotal function has been proved, thus suggesting the need for the repression of these DNMTs in the maintenance of a differentiated phenotype. CONCLUSIONS: HNF4α maintains hepatocyte identity by regulating miR-29a and -29b expression, which in turn control epigenetic modifications by limiting DNMT3A and DNMT3B levels.


Asunto(s)
Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética/fisiología , Transición Epitelial-Mesenquimal/genética , Factor Nuclear 4 del Hepatocito/fisiología , Hepatocitos/citología , MicroARNs/fisiología , Animales , Células Cultivadas , Reprogramación Celular/genética , ADN Metiltransferasa 3A , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Ratones , Ratones Noqueados
7.
J Cell Sci ; 127(Pt 17): 3757-67, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25002401

RESUMEN

Higher-order chromatin structures appear to be dynamically arranged during development and differentiation. However, the molecular mechanism underlying their maintenance or disruption and their functional relevance to gene regulation are poorly understood. We recently described a dynamic long-range chromatin interaction between the gene promoter of the cdk inhibitor p57(kip2) (also known as Cdkn1c) and the imprinting control region KvDMR1 in muscle cells. Here, we show that CTCF, the best characterized organizer of long-range chromatin interactions, binds to both the p57(kip2) promoter and KvDMR1 and is necessary for the maintenance of their physical contact. Moreover, we show that CTCF-mediated looping is required to prevent p57(kip2) expression before differentiation. Finally, we provide evidence that the induction of p57(kip2) during myogenesis involves the physical interaction of the muscle-regulatory factor MyoD with CTCF at KvDMR1, the displacement of the cohesin complex subunit Rad21 and the destabilization of the chromatin loop. The finding that MyoD affects chromatin looping at CTCF-binding sites represents the first evidence that a differentiation factor regulates chromatin-loop dynamics and provides a useful paradigm for gaining insights into the developmental regulation of long-range chromatin contacts.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Proteína MioD/genética , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Células Cultivadas , Regulación de la Expresión Génica/genética , Ratones , Desarrollo de Músculos/genética , Regiones Promotoras Genéticas/genética
8.
Proteomics ; 14(9): 1107-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24616218

RESUMEN

Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload.


Asunto(s)
Biomarcadores/metabolismo , Hepatitis C/metabolismo , Sobrecarga de Hierro/metabolismo , Cirrosis Hepática/metabolismo , Vitronectina/metabolismo , Biomarcadores/análisis , Línea Celular , Humanos , Marcaje Isotópico , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Proteómica , Regulación hacia Arriba , Vitronectina/análisis
9.
Nucleic Acids Res ; 40(17): 8266-75, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22740650

RESUMEN

The bHLH transcription factor MyoD, the prototypical master regulator of differentiation, directs a complex program of gene expression during skeletal myogenesis. The up-regulation of the cdk inhibitor p57kip2 plays a critical role in coordinating differentiation and growth arrest during muscle development, as well as in other tissues. p57kip2 displays a highly specific expression pattern and is subject to a complex epigenetic control driving the imprinting of the paternal allele. However, the regulatory mechanisms governing its expression during development are still poorly understood. We have identified an unexpected mechanism by which MyoD regulates p57kip2 transcription in differentiating muscle cells. We show that the induction of p57kip2 requires MyoD binding to a long-distance element located within the imprinting control region KvDMR1 and the consequent release of a chromatin loop involving p57kip2 promoter. We also show that differentiation-dependent regulation of p57kip2, while involving a region implicated in the imprinting process, is distinct and hierarchically subordinated to the imprinting control. These findings highlight a novel mechanism, involving the modification of higher order chromatin structures, by which MyoD regulates gene expression. Our results also suggest that chromatin folding mediated by KvDMR1 could account for the highly restricted expression of p57kip2 during development and, possibly, for its aberrant silencing in some pathologies.


Asunto(s)
Cromatina/química , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Impresión Genómica , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Elementos Reguladores de la Transcripción , Animales , Células Cultivadas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Canal de Potasio KCNQ1/biosíntesis , Canal de Potasio KCNQ1/genética , Ratones , Regiones Promotoras Genéticas
10.
Drug Discov Today ; 29(8): 104062, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871111

RESUMEN

Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.

11.
Cell Rep ; 43(6): 114369, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878288

RESUMEN

Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs), and provides functional information to receiving cells. Mechanistically, the intracellular functional impairment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miRNAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell communication. This highlights that a further level of complexity should be considered when relating cellular dynamics to specific miRNAs.


Asunto(s)
Adenosina , Proteínas Argonautas , Comunicación Celular , Vesículas Extracelulares , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HEK293 , Animales
13.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254102

RESUMEN

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Asunto(s)
Benzamidas , Carcinoma Epitelial de Ovario , Adhesión Celular , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Neoplasias Ováricas , Neoplasias Peritoneales , Animales , Femenino , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Anticuerpos Monoclonales , Carcinoma Epitelial de Ovario/metabolismo , Epitelio , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilasa 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Proteómica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilasa 2/metabolismo , Adhesión Celular/genética
14.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38190615

RESUMEN

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Selenio , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina/uso terapéutico , Ratas Wistar , Neuroprotección , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Receptores de Serotonina , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
15.
Cell Death Dis ; 14(1): 32, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650140

RESUMEN

YES-associated protein (YAP) is a transcriptional cofactor with a key role in the regulation of several physio-pathological cellular processes, by integrating multiple cell autonomous and microenvironmental cues. YAP is the main downstream effector of the Hippo pathway, a tumor-suppressive signaling able to transduce several extracellular signals. The Hippo pathway acts restraining YAP activity, since its activation induces YAP phosphorylation and cytoplasmic sequestration. However, recent observations indicate that YAP activity can be also modulated by Hippo independent/integrating pathways, still largely unexplored. In this study, we demonstrated the role of the extracellular signal-regulated kinase 5 (ERK5)/mitogen-activated protein kinase in the regulation of YAP activity. By means of ERK5 inhibition/silencing and overexpression experiments, and by using as model liver stem cells, hepatocytes, and hepatocellular carcinoma (HCC) cell lines, we provided evidence that ERK5 is required for YAP-dependent gene expression. Mechanistically, ERK5 controls the recruitment of YAP on promoters of target genes and its physical interaction with the transcriptional partner TEAD; moreover, it mediates the YAP activation occurring in cell adhesion, migration, and TGFß-induced EMT of liver cells. Furthermore, we demonstrated that ERK5 signaling modulates YAP activity in a LATS1/2-independent manner. Therefore, our observations identify ERK5 as a novel upstream Hippo-independent regulator of YAP activity, thus unveiling a new target for therapeutic approaches aimed at interfering with its function.


Asunto(s)
Hepatocitos , Proteína Quinasa 7 Activada por Mitógenos , Proteínas Señalizadoras YAP , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Neoplasias Hepáticas/patología , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo , Hepatocitos/metabolismo , Células Madre
16.
Antioxidants (Basel) ; 12(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37760074

RESUMEN

Overweight and obesity prevalence has increased worldwide. Apart from conventional approaches, people also resort to botanical supplements for reducing body weight, although several adverse events have been associated with these products. In this context, the present study aimed at evaluating the toxicity of Garcinia cambogia-based products and shedding light on the mechanisms involved. The suspected hepatotoxic reactions related to G. cambogia-containing products collected within the Italian Phytovigilance System (IPS) were examined. Then, an in vitro study was performed to evaluate the possible mechanisms responsible for the liver toxicity, focusing on the modulation of oxidative stress and Nrf2 expression. From March 2002 to March 2022, the IPS collected eight reports of hepatic adverse reactions related to G. cambogia, which exclusively involved women and were mostly severe. The causality assessment was probable in three cases, while it was possible in five. In the in vitro experiments, a low cytotoxicity of G. cambogia was observed. However, its combination with montelukast greatly reduced cell viability, increased the intracellular ROS levels, and affected the cytoplasmic Nrf2 expression, thus suggesting an impairment of the antioxidant and cytoprotective defenses. Overall, our results support the safety concerns about G. cambogia-containing supplements and shed light on the possible mechanisms underpinning its hepatotoxicity.

17.
Front Cell Infect Microbiol ; 13: 1257683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162580

RESUMEN

Background: Despite the significant progress achieved in understanding the pathology and clinical management of SARS-CoV-2 infection, still pathogenic and clinical issues need to be clarified. Treatment with modulators of epigenetic targets, i.e., epidrugs, is a current therapeutic option in several cancers and could represent an approach in the therapy of viral diseases. Results: Aim of this study was the analysis of the role of histone deacetylase (HDAC) inhibition in the modulation of SARS-CoV-2 infection of mesothelial cells (MCs).MeT5A cells, a pleura MC line, were pre-treated with different specific class I and IIb HDAC inhibitors. Unexpectedly, treatment with HDAC1-3 inhibitors significantly increased ACE2/TMPRSS2 expression, suggesting a role in favoring SARS-CoV-2 infection. We focused our analysis on the most potent ACE2/TMPRSS2 inducer among the inhibitors analysed, MS-275, a HDAC1-3 inhibitor. ACE2/TMPRSS2 expression was validated by Western Blot (WB) and immunofluorescence. The involvement of HDAC inhibition in receptor induction was confirmed by HDAC1/HDAC2 silencing. In accordance to the ACE2/TMPRSS2 expression data, MS-275 increased SARS-CoV-2 replication and virus propagation in Vero E6 cells.Notably, MS-275 was able to increase ACE2/TMPRSS2 expression and SARS-CoV-2 production, although to a lesser extent, also in the lung adenocarcinoma cell line Calu-3 cells.Mechanistically, treatment with MS-275 increased H3 and H4 histone acetylation at ACE2/TMPRSS2 promoters, increasing their transcription. Conclusion: This study highlights a previously unrecognized effect of HDAC1-3 inhibition in increasing SARS-CoV-2 cell entry, replication and productive infection correlating with increased expression of ACE2 and TMPRSS2. These data, while adding basic insight into COVID-19 pathogenesis, warn for the use of HDAC inhibitors in SARS-CoV-2 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Pulmón/metabolismo , Células Epiteliales , Histona Desacetilasa 1/metabolismo
18.
J Med Chem ; 66(14): 9622-9641, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37439550

RESUMEN

The mitochondrial SIRT3 modulates several biological pathways such as cancer, metabolism, and hypoxia-related diseases. Recently, we discovered new 1,4-dihydropyridines, compounds 2 and 3, the latter being a SIRT3-specific activator. In the present work, a novel 2- and 3-related small series of compounds have been developed, with 3c displaying the strongest SIRT3 binding and activation, with a KD of 29 µM and 387% of enzyme activation. Differently, 3d was the best in enhancing glutamate dehydrogenase activity and deacetylating K68- and K122-acMnSOD in triple-negative MDA-MB-231 breast cancer cells. Tested in CAL-62 thyroid cancer and MDA-MB-231 cells, 3d displayed the strongest time- and dose-dependent reduction of cell viability and clonogenicity at a single-digit micromolar level, along with cell death, in both normoxia and hypoxia conditions. Moreover, 3d downregulated not only hypoxia-induced factors, such as HIF-1α, EPAS-1, and CA-IX, but also epithelial-mesenchymal transition master regulators and extracellular matrix components such as SNAIL1, ZEB1, SLUG, COL1A2, MMP2, and MMP9, markedly hampering MDA-MB-231 cell migration.


Asunto(s)
Neoplasias , Sirtuina 3 , Humanos , Supervivencia Celular , Línea Celular Tumoral , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia
19.
Oncoscience ; 9: 49-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110328

RESUMEN

Long non-coding RNAs (lncRNAs) exert central pathophysiological roles through the regulation of gene expression both at transcriptional and post-transcriptional levels. The characterization of lncRNAs' interactome is disclosing several new mechanisms that control disease onset and progression thus opening the way to the development of new pioneering therapeutic approaches. Regarding the lncRNA HOTAIR, found upregulated in several cancers and in liver fibrosis, it has been proved as a potential therapeutic target. HOTAIR acts as a ceRNA for several miRNAs and it directly interacts with chromatin remodelling complexes (e.g. PRC2 and LSD1/NuRD complexes). In this regard, we recently reported the transcription factor SNAIL-mediated recruitment of HOTAIR/PRC2 complex on specific chromatin sites causing epithelial genes' repression through epigenetic chromatin modifications. Conversely, HOTAIR is repressed by the liver-enriched transcriptional factor HNF4a that binds to both HOTAIR promoter and distant enhancer and impairs the formation of a chromatin loop between these genomic regions. In a therapeutic perspective, we design and validated the first example of a dominant negative lncRNA molecule (HOTAIR-sbid) that covers the HOTAIR portion involved in the interaction with SNAIL while is devoid of the domain of interaction with EZH2. Functionally, HOTAIR-sbid expression impairs SNAIL/EZH2/endogenous HOTAIR interaction; thus, PRC2 complex is not recruited on SNAIL-target chromatin sites (i.e. epithelial genes' promoters). Accordingly, the cells rescue an epithelial phenotype, reduce EMT and, in turn, migratory, invasive and anchorage independent growth abilities. This approach promises high level of specificity and limited off-target effects. Future investigations should enhance RNAs' stability and should design strategies for the delivery of these molecules to specific target cells.

20.
Cells ; 11(21)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359831

RESUMEN

The discovery of the skeletal muscle-specific transcription factor MyoD represents a milestone in the field of transcriptional regulation during differentiation and cell-fate reprogramming. MyoD was the first tissue-specific factor found capable of converting non-muscle somatic cells into skeletal muscle cells. A unique feature of MyoD, with respect to other lineage-specific factors able to drive trans-differentiation processes, is its ability to dramatically change the cell fate even when expressed alone. The present review will outline the molecular strategies by which MyoD reprograms the transcriptional regulation of the cell of origin during the myogenic conversion, focusing on the activation and coordination of a complex network of co-factors and epigenetic mechanisms. Some molecular roadblocks, found to restrain MyoD-dependent trans-differentiation, and the possible ways for overcoming these barriers, will also be discussed. Indeed, they are of critical importance not only to expand our knowledge of basic muscle biology but also to improve the generation skeletal muscle cells for translational research.


Asunto(s)
Desarrollo de Músculos , Proteína MioD , Proteína MioD/genética , Desarrollo de Músculos/genética , Diferenciación Celular , Músculo Esquelético , Transdiferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA