Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 430-442.e17, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606353

RESUMEN

Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult hemoglobin (HbA, α2ß2) disorders, sickle cell disease, and ß-thalassemia. Common genetic variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how BCL11A supports the developmental switch from γ- to ß- globin, we use a functional assay and protein binding microarray to establish a requirement for a zinc-finger cluster in BCL11A in repression and identify a preferred DNA recognition sequence. This motif appears in embryonic and fetal-expressed globin promoters and is duplicated in γ-globin promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary persistence of HbF. Using the CUT&RUN approach to map protein binding sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif, which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene promoter repression by BCL11A underlies hemoglobin switching.


Asunto(s)
Proteínas Portadoras/metabolismo , Hemoglobina Fetal/genética , Proteínas Nucleares/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/genética , Línea Celular , Cromatina/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Edición Génica , Humanos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras , Dedos de Zinc/genética , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/patología , gamma-Globinas/genética
2.
Nature ; 628(8008): 639-647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570691

RESUMEN

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Asunto(s)
Edición Génica , Proteínas de Unión al ARN , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , ARN Polimerasa III/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Nature ; 621(7978): 404-414, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648862

RESUMEN

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Asunto(s)
Epítopos , Edición Génica , Inmunoterapia , Leucemia Mieloide Aguda , Animales , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD34/metabolismo , Trasplante de Médula Ósea , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Hematopoyesis , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos/inmunología , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Receptores Quiméricos de Antígenos/inmunología , Recurrencia , Linfocitos T/inmunología , Acondicionamiento Pretrasplante , Escape del Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Methods ; 20(9): 1368-1378, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537351

RESUMEN

Gene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts. Dictys improves GRN reconstruction accuracy and reproducibility and enables the inference and comparative analysis of context-specific and dynamic GRNs across developmental contexts. Dictys' network analyses recover unique insights in human blood and mouse skin development with cell-type-specific and dynamic GRNs. Its dynamic network visualizations enable time-resolved discovery and investigation of developmental driver transcription factors and their regulated targets. Dictys is available as a free, open-source and user-friendly Python package.


Asunto(s)
Redes Reguladoras de Genes , Multiómica , Animales , Ratones , Humanos , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Algoritmos
5.
Cytotherapy ; 26(6): 641-648, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38506770

RESUMEN

Ex vivo resting culture is a standard procedure following genome editing in hematopoietic stem and progenitor cells (HSPCs). However, prolonged culture may critically affect cell viability and stem cell function. We investigated whether varying durations of culture resting times impact the engraftment efficiency of human CD34+ HSPCs edited at the BCL11A enhancer, a key regulator in the expression of fetal hemoglobin. We employed electroporation to introduce CRISPR-Cas9 components for BCL11A enhancer editing and compared outcomes with nonelectroporated (NEP) and electroporated-only (EP) control groups. Post-electroporation, we monitored cell viability, death rates, and the frequency of enriched hematopoietic stem cell (HSC) fractions (CD34+CD90+CD45RA- cells) over a 48-hour period. Our findings reveal that while the NEP group showed an increase in cell numbers 24 hours post-electroporation, both EP and BCL11A-edited groups experienced significant cell loss. Although CD34+ cell frequency remained high in all groups for up to 48 hours post-electroporation, the frequency of the HSC-enriched fraction was significantly lower in the EP and edited groups compared to the NEP group. In NBSGW xenograft mouse models, both conditioned with busulfan and nonconditioned, we found that immediate transplantation post-electroporation led to enhanced engraftment without compromising editing efficiency. Human glycophorin A+ (GPA+) red blood cells (RBCs) sorted from bone marrow of all BCL11A edited mice exhibited similar levels of γ-globin expression, regardless of infusion time. Our findings underscore the critical importance of optimizing the culture duration between genome editing and transplantation. Minimizing this interval may significantly enhance engraftment success and minimize cell loss without compromising editing efficiency. These insights offer a pathway to improve the success rates of genome editing in HSPCs, particularly for conditions like sickle cell disease.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Humanos , Edición Génica/métodos , Ratones , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Trasplante de Células Madre Hematopoyéticas/métodos , Sistemas CRISPR-Cas/genética , Electroporación/métodos , Xenoinjertos , Supervivencia Celular , Antígenos CD34/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
6.
Mol Ther ; 30(8): 2693-2708, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35526095

RESUMEN

A promising treatment for ß-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from ß-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating ß-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.


Asunto(s)
Hemoglobina Fetal , Hemoglobinopatías , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , gamma-Globinas/genética
7.
Bioinformatics ; 37(15): 2103-2111, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33532840

RESUMEN

MOTIVATION: Genome-wide association studies (GWASs) have identified thousands of common trait-associated genetic variants but interpretation of their function remains challenging. These genetic variants can overlap the binding sites of transcription factors (TFs) and therefore could alter gene expression. However, we currently lack a systematic understanding on how this mechanism contributes to phenotype. RESULTS: We present Motif-Raptor, a TF-centric computational tool that integrates sequence-based predictive models, chromatin accessibility, gene expression datasets and GWAS summary statistics to systematically investigate how TF function is affected by genetic variants. Given trait-associated non-coding variants, Motif-Raptor can recover relevant cell types and critical TFs to drive hypotheses regarding their mechanism of action. We tested Motif-Raptor on complex traits such as rheumatoid arthritis and red blood cell count and demonstrated its ability to prioritize relevant cell types, potential regulatory TFs and non-coding SNPs which have been previously characterized and validated. AVAILABILITY AND IMPLEMENTATION: Motif-Raptor is freely available as a Python package at: https://github.com/pinellolab/MotifRaptor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Mol Ther ; 29(11): 3163-3178, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34628053

RESUMEN

Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and ß-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the ß-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Edición Génica , Terapia Genética/métodos , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Globinas beta/genética , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Animales , Biomarcadores , Sistemas CRISPR-Cas , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Manejo de la Enfermedad , Edición Génica/métodos , Predisposición Genética a la Enfermedad , Terapia Genética/efectos adversos , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Talasemia beta/genética , Talasemia beta/terapia
9.
Annu Rev Med ; 70: 257-271, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30355263

RESUMEN

The genetic basis of sickle cell disease (SCD) was elucidated >60 years ago, yet current therapy does not rely on this knowledge. Recent advances raise prospects for improved, and perhaps curative, treatment. First, transcription factors, BCL11A and LRF/ZBTB7A, that mediate silencing of the ß-like fetal (γ-) globin gene after birth have been identified and demonstrated to act at the γ-globin promoters, precisely at recognition sequences disrupted in rare individuals with hereditary persistence of fetal hemoglobin. Second, transformative advances in gene editing and progress in lentiviral gene therapy provide diverse opportunities for genetic strategies to cure SCD. Approaches include hematopoietic gene therapy by globin gene addition, gene editing to correct the SCD mutation, and genetic manipulations to enhance fetal hemoglobin production, a potent modifier of the clinical phenotype. Clinical trials may soon identify efficacious and safe genetic approaches to the ultimate goal of cure for SCD.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Predisposición Genética a la Enfermedad/epidemiología , Terapia Genética/tendencias , Proteínas Represoras/genética , Anemia de Células Falciformes/diagnóstico , Proteínas de Unión al ADN/genética , Femenino , Predicción , Edición Génica , Terapia Genética/métodos , Humanos , Masculino , Mutación/genética , Factores de Transcripción/genética
10.
Blood ; 133(21): 2255-2262, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-30704988

RESUMEN

The thalassemias are compelling targets for therapeutic genome editing in part because monoallelic correction of a subset of hematopoietic stem cells (HSCs) would be sufficient for enduring disease amelioration. A primary challenge is the development of efficient repair strategies that are effective in HSCs. Here, we demonstrate that allelic disruption of aberrant splice sites, one of the major classes of thalassemia mutations, is a robust approach to restore gene function. We target the IVS1-110G>A mutation using Cas9 ribonucleoprotein (RNP) and the IVS2-654C>T mutation by Cas12a/Cpf1 RNP in primary CD34+ hematopoietic stem and progenitor cells (HSPCs) from ß-thalassemia patients. Each of these nuclease complexes achieves high efficiency and penetrance of therapeutic edits. Erythroid progeny of edited patient HSPCs show reversal of aberrant splicing and restoration of ß-globin expression. This strategy could enable correction of a substantial fraction of transfusion-dependent ß-thalassemia genotypes with currently available gene-editing technology.


Asunto(s)
Edición Génica , Regulación de la Expresión Génica , Células Madre Hematopoyéticas , Sitios de Empalme de ARN , Empalme del ARN , Globinas beta , Talasemia beta , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Mutación Puntual , Globinas beta/biosíntesis , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/metabolismo , Talasemia beta/terapia
11.
Nat Chem Biol ; 15(5): 529-539, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30992567

RESUMEN

Understanding the mechanism of small molecules is a critical challenge in chemical biology and drug discovery. Medicinal chemistry is essential for elucidating drug mechanism, enabling variation of small molecule structure to gain structure-activity relationships (SARs). However, the development of complementary approaches that systematically vary target protein structure could provide equally informative SARs for investigating drug mechanism and protein function. Here we explore the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML). Through this approach, termed CRISPR-suppressor scanning, we elucidate drug mechanism of action by showing that LSD1 enzyme activity is not required for AML survival and that LSD1 inhibitors instead function by disrupting interactions between LSD1 and the transcription factor GFI1B on chromatin. Our studies clarify how LSD1 inhibitors mechanistically operate in AML and demonstrate how CRISPR-suppressor scanning can uncover novel aspects of target biology.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Modelos Moleculares , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
12.
Nature ; 527(7577): 192-7, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26375006

RESUMEN

Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Proteínas Portadoras/genética , Elementos de Facilitación Genéticos/genética , Ingeniería Genética , Mutagénesis/genética , Proteínas Nucleares/genética , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas de Unión al ADN , Eritroblastos/metabolismo , Hemoglobina Fetal/genética , Genoma/genética , Humanos , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , ARN Guía de Kinetoplastida/genética , Proteínas Represoras , Reproducibilidad de los Resultados , Especificidad de la Especie
13.
Hum Mol Genet ; 27(8): 1411-1420, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29432581

RESUMEN

In humans, fetal erythropoiesis takes place in the liver whereas adult erythropoiesis occurs in the bone marrow. Fetal and adult erythroid cells are not only produced at different sites, but are also distinguished by their respective transcriptional program. In particular, whereas fetal erythroid cells express γ-globin chains to produce fetal hemoglobin (HbF), adult cells express ß-globin chains to generate adult hemoglobin. Understanding the transcriptional regulation of the fetal-to-adult hemoglobin switch is clinically important as re-activation of HbF production in adult erythroid cells would represent a promising therapy for the hemoglobin disorders sickle cell disease and ß-thalassemia. We used RNA-sequencing to measure global gene and microRNA (miRNA) expression in human erythroblasts derived ex vivo from fetal liver (n = 12 donors) and bone marrow (n = 12 donors) hematopoietic stem/progenitor cells. We identified 7829 transcripts and 402 miRNA that were differentially expressed (false discovery rate <5%). The miRNA expression patterns were replicated in an independent collection of human erythroblasts using a different technology. By combining gene and miRNA expression data, we developed transcriptional networks which show substantial differences between fetal and adult human erythroblasts. Our analyses highlighted the miRNAs at the imprinted 14q32 locus in fetal erythroblasts and the let-7 miRNA family in adult erythroblasts as key regulators of stage-specific erythroid transcriptional programs. Altogether, our results provide a comprehensive resource to prioritize genes that may modify clinical severity in red blood cell (RBC) disorders, or genes that might be implicated in erythropoiesis by genome-wide association studies of RBC traits.


Asunto(s)
Eritropoyesis/genética , Hemoglobina Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , MicroARNs/genética , Transcripción Genética , Adulto , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Proliferación Celular , Cromosomas Humanos Par 14/química , Cromosomas Humanos Par 14/metabolismo , Eritroblastos/citología , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Ontología de Genes , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Globinas beta/genética , Globinas beta/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo
14.
Bioinformatics ; 35(11): 1981-1984, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395160

RESUMEN

MOTIVATION: The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) nuclease system has allowed for high-throughput, large scale pooled screens for functional genomic studies. To aid in the translation of functional genomics to therapeutics, we developed DrugThatGene (DTG) as a web-based application that streamlines analysis of potential therapeutic targets identified from functional genetic screens. RESULTS: Starting from a gene list as input, DTG offers automated identification of small molecules along with supporting information from human genetic and other relevant databases. Furthermore, DTG aids in the identification of common biological pathways and protein complexes in conjunction with associated small molecule inhibitors. Taken together, DTG aims to expedite the identification of small molecules from the abundance of functional genetic data generated from CRISPR screens. AVAILABILITY AND IMPLEMENTATION: DTG is an open-source and free software available as a website at http://drugthatgene.pinellolab.org. Source code is available at: https://github.com/pinellolab/DrugThatGene, which can be downloaded in order to run DTG locally.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas , Humanos , Programas Informáticos
15.
Blood ; 142(9): 755-756, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37651157
16.
PLoS Genet ; 13(4): e1006760, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28453575

RESUMEN

Prior GWAS have identified loci associated with red blood cell (RBC) traits in populations of European, African, and Asian ancestry. These studies have not included individuals with an Amerindian ancestral background, such as Hispanics/Latinos, nor evaluated the full spectrum of genomic variation beyond single nucleotide variants. Using a custom genotyping array enriched for Amerindian ancestral content and 1000 Genomes imputation, we performed GWAS in 12,502 participants of Hispanic Community Health Study and Study of Latinos (HCHS/SOL) for hematocrit, hemoglobin, RBC count, RBC distribution width (RDW), and RBC indices. Approximately 60% of previously reported RBC trait loci generalized to HCHS/SOL Hispanics/Latinos, including African ancestral alpha- and beta-globin gene variants. In addition to the known 3.8kb alpha-globin copy number variant, we identified an Amerindian ancestral association in an alpha-globin regulatory region on chromosome 16p13.3 for mean corpuscular volume and mean corpuscular hemoglobin. We also discovered and replicated three genome-wide significant variants in previously unreported loci for RDW (SLC12A2 rs17764730, PSMB5 rs941718), and hematocrit (PROX1 rs3754140). Among the proxy variants at the SLC12A2 locus we identified rs3812049, located in a bi-directional promoter between SLC12A2 (which encodes a red cell membrane ion-transport protein) and an upstream anti-sense long-noncoding RNA, LINC01184, as the likely causal variant. We further demonstrate that disruption of the regulatory element harboring rs3812049 affects transcription of SLC12A2 and LINC01184 in human erythroid progenitor cells. Together, these results reinforce the importance of genetic study of diverse ancestral populations, in particular Hispanics/Latinos.


Asunto(s)
Proteínas de Homeodominio/genética , Complejo de la Endopetidasa Proteasomal/genética , ARN Largo no Codificante/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Proteínas Supresoras de Tumor/genética , Globinas alfa/genética , Recuento de Eritrocitos , Eritrocitos , Femenino , Estudio de Asociación del Genoma Completo , Hemoglobinas/genética , Hispánicos o Latinos/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Globinas beta/genética
17.
Genes Dev ; 26(18): 2075-87, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22929040

RESUMEN

Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular , Ciclina D3/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Animales , Recuento de Células , Tamaño de la Célula , Células Cultivadas , Ciclina D3/genética , Eritropoyesis/fisiología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Ratones , Ratones Noqueados
18.
J Biol Chem ; 293(51): 19797-19811, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30366982

RESUMEN

Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.


Asunto(s)
Células Eritroides/metabolismo , Eritropoyetina/metabolismo , Ferroquelatasa/metabolismo , Hemo/biosíntesis , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Células Eritroides/citología , Eritropoyesis , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Transporte de Proteínas
19.
Hum Mol Genet ; 26(14): 2678-2689, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28444193

RESUMEN

Gene editing technologies offer new options for developing novel biomedical research models and for gene and stem cell based therapies. However, applications in many species demand high efficiencies, specificity, and a thorough understanding of likely editing outcomes. To date, overall efficiencies, rates of off-targeting and degree of genetic mosaicism have not been well-characterized for most species, limiting our ability to optimize methods. As a model gene for measuring these parameters of the CRISPR/Cas9 application in a primate species (rhesus monkey), we selected the ß-hemoglobin gene (HBB), which also has high relevance to the potential application of gene editing and stem-cell technologies for treating human disease. Our data demonstrate an ability to achieve a high efficiency of gene editing in rhesus monkey zygotes, with no detected off-target effects at selected off-target loci. Considerable genetic mosaicism and variation in the fraction of embryonic cells bearing targeted alleles are observed, and the timing of editing events is revealed using a new model. The uses of Cas9-WT protein combined with optimized concentrations of sgRNAs are two likely areas for further refinement to enhance efficiency while limiting unfavorable outcomes that can be exceedingly costly for application of gene editing in primate species.


Asunto(s)
Hemoglobina Fetal/genética , Globinas beta/genética , Alelos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Caspasa 9/administración & dosificación , Caspasa 9/genética , Femenino , Edición Génica/métodos , Macaca mulatta , Microinyecciones , Mosaicismo/embriología , Embarazo , ARN Mensajero/administración & dosificación
20.
Bioinformatics ; 34(13): i202-i210, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949956

RESUMEN

Motivation: Unique molecular identifiers (UMIs) are added to DNA fragments before PCR amplification to discriminate between alleles arising from the same genomic locus and sequencing reads produced by PCR amplification. While computational methods have been developed to take into account UMI information in genome-wide and single-cell sequencing studies, they are not designed for modern amplicon-based sequencing experiments, especially in cases of high allelic diversity. Importantly, no guidelines are provided for the design of optimal UMI length for amplicon-based sequencing experiments. Results: Based on the total number of DNA fragments and the distribution of allele frequencies, we present a model for the determination of the minimum UMI length required to prevent UMI collisions and reduce allelic distortion. We also introduce a user-friendly software tool called AmpUMI to assist in the design and the analysis of UMI-based amplicon sequencing studies. AmpUMI provides quality control metrics on frequency and quality of UMIs, and trims and deduplicates amplicon sequences with user specified parameters for use in downstream analysis. Availability and implementation: AmpUMI is open-source and freely available at http://github.com/pinellolab/AmpUMI.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Modelos Genéticos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Frecuencia de los Genes , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA