Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982579

RESUMEN

Contemporary medicine has been confronted by multidrug resistance. Therefore, new antibiotics are sought to alleviate the problem. In this study, we estimated the effect of the positioning and extent of lipidation (mainly octanoic acid residue) in the KR12-NH2 molecule on antibacterial and hemolytic activities. The effect of the conjugation of benzoic acid derivatives (C6H5-X-COOH, where X: CH2, CH2-CH2, CH=CH, C≡C, and CH2-CH2-CH2) with the N-terminal part of KR12-NH2 on biological activity was also studied. All analogs were tested against planktonic cells of ESKAPE bacteria and reference strains of Staphylococcus aureus. The effect of lipidation site on the helicity of the KR12-NH2 analogs was studied using CD spectroscopy. The ability of the selected peptides to induce the aggregation of POPG liposomes was evaluated with DLS measurements. We demonstrated that both the site and extent of peptide lipidation play an essential role in the bacterial specificity of the lipopeptides. Most of the C8α-KR12-NH2 (II) analogs that were more hydrophobic than the parent compound were also more hemolytic. A similar relationship was also found between the α-helical structure content in POPC and hemolytic activity. It is worth emphasizing that in our study, the highest selectivity against S. aureus strains with an SI value of at least 21.11 exhibited peptide XII obtained by the conjugation of the octanoic acid with the N-terminus of retro-KR12-NH2. All lipidated analogs with the highest net charge (+5) were the most selective toward pathogens. Therefore, the overall charge of KR12-NH2 analogs plays pivotal role in their biological activity.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Caprilatos/farmacología , Lipopéptidos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
2.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077257

RESUMEN

Investigating novel, biologically-active coordination compounds that may be useful in the design of breast anticancer, antifungal, and antimicrobial agents is still the main challenge for chemists. In order to get closer to solving this problem, three new copper coordination compounds containing thiazole-based derivatives were synthesized. The structures of the synthesized compounds and their physicochemical characterization were evaluated based on elemental analysis, 1H and l3C nuclear magnetic resonance (NMR), flame atomic absorption spectroscopy (F-AAS), single-crystal X-ray diffraction, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The pharmacokinetics were studied using SwissADME. The results obtained from the computational studies supported the results obtained from the MTT analysis, and the antimicrobial activity was expressed as the minimum inhibitory concentration (MIC).


Asunto(s)
Antiinfecciosos , Antineoplásicos , Neoplasias de la Mama , Antibacterianos/farmacología , Antiinfecciosos/química , Antifúngicos/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Tiazoles/química
3.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804887

RESUMEN

Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. l-cystine diamide and l-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the l-cystine diamide spacer seem to be less cytotoxic than their l-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/síntesis química , Biopelículas/efectos de los fármacos , Lipoproteínas/síntesis química , Tensoactivos/síntesis química , Secuencias de Aminoácidos , Péptidos Catiónicos Antimicrobianos/farmacología , Arginina/química , Candida/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Cistina/química , Enterobacteriaceae/efectos de los fármacos , Ácidos Grasos/química , Hemólisis , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas/farmacología , Lisina/química , Micelas , Tensoactivos/farmacología
4.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019109

RESUMEN

An increasing number of multidrug-resistant pathogens is a serious problem of modern medicine and new antibiotics are highly demanded. In this study, different n-alkyl acids (C2-C14) and aromatic acids (benzoic and trans-cinnamic) were conjugated to the N-terminus of KR12 amide. The effect of this modification on antimicrobial activity (ESKAPE bacteria and biofilm of Staphylococcus aureus) and cytotoxicity (human red blood cells and HaCaT cell line) was examined. The effect of lipophilic modifications on helicity was studied by CD spectroscopy, whereas peptide self-assembly was studied by surface tension measurements and NMR spectroscopy. As shown, conjugation of the KR12-NH2 peptide with C4-C14 fatty acid chains enhanced the antimicrobial activity with an optimum demonstrated by C8-KR12-NH2 (MIC 1-4 µg/mL against ESKAPE strains; MBEC of S. aureus 4-16 µg/mL). Correlation between antimicrobial activity and self-assembly behavior of C14-KR12-NH2 and C8-KR12-NH2 has shown that the former self-assembled into larger aggregated structures, which reduced its antimicrobial activity. In conclusion, N-terminal modification can enhance antimicrobial activity of KR12-NH2; however, at the same time, the cytotoxicity increases. It seems that the selectivity against pathogens over human cells can be achieved through conjugation of peptide N-terminus with appropriate n-alkyl fatty and aromatic acids.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ácidos Grasos/química , Fragmentos de Péptidos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Eritrocitos/efectos de los fármacos , Humanos , Imidazoles/química , Lipopéptidos , Nylons/química , Fragmentos de Péptidos/química , Infecciones Estafilocócicas/microbiología , Propiedades de Superficie , Catelicidinas
5.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255674

RESUMEN

Antimicrobial peptides (AMPs) constitute a promising tool in the development of novel therapeutic agents useful in a wide range of bacterial and fungal infections. Among the modifications improving pharmacokinetic and pharmacodynamic characteristics of natural AMPs, an important role is played by lipidation. This study focuses on the newly designed and synthesized lipopeptides containing multiple Lys residues or their shorter homologues with palmitic acid (C16) attached to the side chain of a residue located in the center of the peptide sequence. The approach resulted in the development of lipopeptides representing a model of surfactants with two polar headgroups. The aim of this study is to explain how variations in the length of the peptide chain or the hydrocarbon side chain of an amino acid residue modified with C16, affect biological functions of lipopeptides, their self-assembling propensity, and their mode of action.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Infecciones Bacterianas/tratamiento farmacológico , Lipopéptidos/química , Micosis/tratamiento farmacológico , Secuencia de Aminoácidos/genética , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Bacterianas/microbiología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Escherichia coli/efectos de los fármacos , Humanos , Lipopéptidos/genética , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Micosis/microbiología , Relación Estructura-Actividad
6.
Molecules ; 25(2)2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936341

RESUMEN

Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Ácidos Grasos/farmacología , Hemólisis/efectos de los fármacos , Lipopéptidos/farmacología , Cationes , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lipopéptidos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 27(23): 115129, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668583

RESUMEN

Short cationic antimicrobial lipopeptides with surfactant-like structure are promising antibiotic candidates that preferentially target microbial membranes. Therefore, we focused our study on double-chain lipopeptides, (C10-16)2Dab-KKK-NH2 and (C10-16)2Dap-KKK-NH2, where Dab and Dap are 2,4-diaminobutyric and 2,3-diaminopropionic acids, respectively. We tried to answer a question how the self-assembly behaviour affects biological activities of the tested compounds. The subject compounds were synthesized by solid-phase method and screened for their antimicrobial and haemolytic activities. Cytotoxicity tests on human keratinocytes were carried out for the most promising lipopeptides. Self-assembly properties were evaluated by both experimental and theoretical methods. Interactions with membrane models were examined using the ITC and FTIR techniques. All the lipopeptides studied showed the tendency to self-assembly in solution, and this behaviour was affected by the length of the hydrocarbon chains. Acyl chain elongation supported the formation of the bilayer structure and deprived the lipopeptides of antimicrobial activity. A multi-step mechanism of interaction with a negatively charged membrane was observed for the short-chain lipopeptides, indicating other processes accompanying the binding process. Short-chain lipopeptides were able to penetrate into the liposome's interior and/or cause the rupture of the liposome, this being compatible with their high antimicrobial activity.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Lipopéptidos/química , Lipopéptidos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Hemólisis/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular
8.
Amino Acids ; 50(5): 609-619, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29307075

RESUMEN

In view of an appreciable increase in resistance of Staphylococcus aureus to the conventional antibiotics, it is desired to develop new effective drugs. Antimicrobial peptides (AMPs) seem to be attractive candidates. In general, AMPs samples used for in vitro studies consist of a peptide, counter-ion, and water. The presence of the counter-ion could be significant as it affects peptide secondary structure and biological activity. The purpose of this study was to estimate the impact of counter-ion on antistaphylococcal activity of selected AMPs (CAMEL, citropin 1.1, LL-37, pexiganan, temporin A). To do this, three kinds of salts were prepared, namely, acetates, hydrochlorides, and trifluoroacetates. In addition, the hemolytic activity against human red blood cells (hRBCs) and cytotoxicity (HaCaT) were determined. The results indicate that there is a substantial difference between different salts, but the pattern is not consistent for the peptides. In general, the antistaphylococcal activity decreased in the order: CAMEL > temporin A > pexiganan > citropin 1.1 â‰« LL-37. The highest selectivity indexes were determined for CAMEL hydrochloride, pexiganan acetate, and temporin A trifluoroacetate. This study shows how important is to take into account the kind of counter-ions when designing novel peptide-based antimicrobials.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Staphylococcus aureus/crecimiento & desarrollo , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Cationes/química , Cationes/farmacología
9.
Amino Acids ; 49(10): 1755-1771, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28756544

RESUMEN

Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC-temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.


Asunto(s)
Proteínas Anfibias , Antibacterianos , Péptidos Catiónicos Antimicrobianos , Klebsiella pneumoniae/crecimiento & desarrollo , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología
10.
Postepy Dermatol Alergol ; 34(6): 553-560, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29422820

RESUMEN

INTRODUCTION: Exacerbation of atopic dermatitis can be associated with bacterial infection. The skin of patients is colonized with Staphylococcus aureus in 90% of cases. An attempt has been made to demonstrate that eradication significantly reduces the severity of the disease. Studies indicate the efficacy of topical antibiotics, topical corticosteroids and calcineurin inhibitors. Due to increasing resistance to drugs and the defective antimicrobial peptide profile, decolonization is virtually impossible. AIM: To determine the prevalence of S. aureus colonization among patients with atopic dermatitis and to assess antimicrobial susceptibility of isolated strains to antibiotics, especially fusidic acid and mupirocin. MATERIAL AND METHODS: One hundred patients with atopic dermatitis and 50 healthy subjects were microbiologically assessed for the carriage of S. aureus. Antimicrobial susceptibility tests were performed using the broth-microdilution method for antibiotics: ampicillin, ciprofloxacin, daptomycin, erythromycin, fusidic acid, linezolid, lincomycin, mupirocin, tetracycline and vancomycin. RESULTS: Staphylococcus aureus strains were isolated from the majority of our patients, either from the skin (71%) or the anterior nares (67%). In the present study, 10% of isolations represented methicillin-resistant S. aureus (MRSA). Antibiotics exhibited diverse activities against clinical isolates of S. aureus. Among those tested, the highest rates of resistance were shown for ampicillin - 58.5%, lincomycin - 37.5% and erythromycin - 31.0%. Enhanced resistance levels were expressed to mupirocin (17.5%) and fusidic acid (15.5%). CONCLUSIONS: According to the increasing rate of resistance and quick recolonization after discontinuation of the treatment, chronic use of topical antibiotics is not recommended and should be limited to exacerbation of atopic dermatitis with clinical signs of bacterial infection.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38224448

RESUMEN

Staphylococcus aureus is considered one of the leading pathogens responsible for infections in humans and animals. The heterogeneous nature of diseases caused by these bacteria is due to the occurrence of multiple strains, differentiated by several mechanisms of antibiotic resistance and virulence factors. One of these is the ability to form biofilm. Biofilm-associated bacteria exhibit a different phenotype that protects them from external factors such as the activity of immune system or antimicrobial substances. Moreover, it has been shown that the majority of persistent and recurrent infections are associated with the presence of the biofilm. Omiganan, an analog of indolicidin - antimicrobial peptide (AMP) derived from bovine neutrophil granules, was found to exhibit high antistaphylococcal and antibiofilm potential. Furthermore, its analog with a reversed sequence (retro-omiganan) was found to display enhanced activity against a variety of pathogens. Based on experience of our group, we found out that counterion exchange can improve the antistaphylococcal activity of AMPs. The aim of this study was to investigate the activity of both compounds against S. aureus biofilm under flow conditions. The advantage of this approach was that it offered the opportunity to form and characterize the biofilm under more controlled conditions. To do this, unique flow cells made of polydimethylsiloxane (PDMS) were developed. The activity against pre-formed biofilm as well as AMPs-treated bacteria was measured. Also, the incorporation of omiganan and retro-omiganan into the channels was conducted to learn whether or not it would inhibit the development of biofilm. The results of the microbiological tests ultimately confirmed the high potential of the omiganan and its retro-analog as well as the importance of counterion exchange in terms of antimicrobial examination. We found out that retro-omiganan trifluoroacetate had the highest biofilm inhibitory properties, however, acetates of both compounds exhibited the highest activity against planktonic and biofilm cultures. Moreover, the developed methodology of investigation under flow conditions allows the implementation of the studies under flow conditions to other compounds.

12.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671557

RESUMEN

Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are potent antimicrobials but their major shortcoming is a relatively high cytotoxicity and hemolytic activity. Glycopeptide antibiotics (e.g. vancomycin) are essential in combating bacterial infections and are popular in medicinal practice. However, literature concerning the effect of glycosylation of peptides on their antimicrobial activity is rather scarce. For the first time, this study highlights the effect of USCLs glycosylation on in vitro biological activity. The aim of this study was to evaluate the impact of glycosylation of a series of USCLs on antimicrobial activity, cytotoxicity and hemolytic activity. Straight-chain fatty acids (C14, C16, C18) were attached to the N-terminal amino group of tripeptides-SRR-NH2, RSR-NH2 and RRS-NH2. Two groups of the lipopeptides were synthetized, the first with unmodified L-serine (USCLs) and the other with L-serine O-glycosylated by N-acetyl-ß-d-glucosamine to produce new class of glycosylated ultrashort cationic lipopeptide (gUSCLs). Both USCLs and gUSCLs were tested against planktonic and biofilm cultures of ESKAPE strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Candida glabrata, and hemolytic activity on human erythrocytes and cytotoxicity against the HaCaT cell line was examined. Generally, USCLs and gUSCLs proved to be active against all the tested strains. The highest activity displayed was by lipopeptides containing the C18 fatty acid. Antimicrobial, hemolytic and cytotoxic activities were mainly correlated with amino acid sequence (position of serine/glycosylated serine) and hydrophobicity of molecule and were found to be highly strain-dependent. In general, glycosylation did not guarantee an increased antimicrobial activity or a decreased hemolytic and cytotoxic activities. However, in some cases, gUSCLs proved to be superior to their USCLs analogs. The most pronounced differences were found for peptides with C18 fatty acid and serine at the first and second position against both planktonic cells and biofilm of C. glabrata, as well as the second and third position against S. aureus. It is noteworthy that gUSCLs were also more active against biofilm than were USCLs.


Asunto(s)
Antiinfecciosos , Lipopéptidos , Humanos , Lipopéptidos/farmacología , Lipopéptidos/química , Glicosilación , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Grasos/química , Serina
13.
Probiotics Antimicrob Proteins ; 15(6): 1465-1483, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37770629

RESUMEN

Ultrashort cationic lipopeptides (USCLs) and quaternary ammonium salts constitute two groups of cationic surfactants with high antimicrobial activity. This study aimed to investigate the influence of quaternization of the amino group of the lysine side chain in USCLs on their antimicrobial, hemolytic and cytotoxic activities. To do this, two series of lipopeptides were synthesized, USLCs and their quaternized analogues containing trimethylated lysine residues - qUSCLs (quaternized ultrashort cationic lipopeptides). Quaternization was performed on a resin during a standard solid-phase peptide synthesis with CH3I as the methylating agent. According to our knowledge, this is the first study presenting on-resin peptide quaternization. The lipopeptides were tested for their antibacterial and antifungal activities against the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella aerogenes) bacteria and Candida glabrata yeast-like fungus. Most of the compounds proved to be active antimicrobial agents with enhanced activity against Gram-positive strains and fungi and a lower against Gram-negative species. In addition, the antimicrobial activity of lipopeptides was increasing with an increase in hydrophobicity but qUSCLs exhibited usually a poorer antimicrobial activity than their parent molecules. Furthermore, the toxicity against red blood cells and human keratinocytes was assessed. It's worth emphasizing that qUSCLs were less toxic than the parent molecules of comparative hydrophobicity. The results of the study proved that qUSCLs can offer a higher selectivity to pathogens over human cells than that of USCLs. Last but not least, quaternization of the peptides could increase their solubility and therefore their bioavailability and utility.


Asunto(s)
Compuestos de Amonio , Antiinfecciosos , Antineoplásicos , Humanos , Lisina/química , Sales (Química) , Lipopéptidos/farmacología , Lipopéptidos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Hongos
14.
Nat Commun ; 14(1): 1453, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922490

RESUMEN

Antimicrobial peptides emerge as compounds that can alleviate the global health hazard of antimicrobial resistance, prompting a need for novel computational approaches to peptide generation. Here, we propose HydrAMP, a conditional variational autoencoder that learns lower-dimensional, continuous representation of peptides and captures their antimicrobial properties. The model disentangles the learnt representation of a peptide from its antimicrobial conditions and leverages parameter-controlled creativity. HydrAMP is the first model that is directly optimized for diverse tasks, including unconstrained and analogue generation and outperforms other approaches in these tasks. An additional preselection procedure based on ranking of generated peptides and molecular dynamics simulations increases experimental validation rate. Wet-lab experiments on five bacterial strains confirm high activity of nine peptides generated as analogues of clinically relevant prototypes, as well as six analogues of an inactive peptide. HydrAMP enables generation of diverse and potent peptides, making a step towards resolving the antimicrobial resistance crisis.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias
15.
ACS Med Chem Lett ; 14(12): 1827-1832, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116416

RESUMEN

Teixobactin is a new antibiotic peptide with strong efficacy against several Gram-positive resistant bacteria, the structure of which is extremely difficult to obtain in the laboratory via multistep conventional synthesis. To face the increasing antibiotic resistant bacteria, it is fundamental to introduce new types of antibiotics with innovative mechanisms of action without resistance; thus, many scientists are studying and developing new methods to synthesize teixobactin analogues. In this work, seven Arg10-teixobactin analogues with a total lactam ring have been prepared via solid phase peptide synthesis. In order to obtain the total lactam ring, d-Thr8 was replaced by (2R,3S)-diamino-propionic acid. To verify their antimicrobial activity and efficacy, each analogue was tested with MIC against different resistant pathogens, showing an interesting activity for Nle11 containing compounds.

16.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566859

RESUMEN

Chitosan acquires bacteriostatic properties via protonation of its amino groups. However, much of the literature assumes that chitosan itself inhibits the growth of bacteria. This article presents a comparative study of chitosan nonwovens modified with various acids, including acetic, propionic, butyric, and valeric organic acids, as well as hydrochloric acid. The aim was to determine which acid salts influence the antibacterial and antifungal activity of chitosan-based materials. Two methods were used to modify (formation of ammonium salts) the chitosan nonwovens: First, acid vapors (gassing process) were used to find which salt of chitosan had the best antibacterial properties. Based on the results, the most effective acid was prepared in a solution in ethanol. The influence of the acid concentration in ethanol, the time of treatment of chitosan materials with acid solution, and the rinsing process of modified nonwovens on the antimicrobial activity of the modified materials was investigated. The modified materials were subjected to microbiological tests. Each of the modified materials was placed in bacterial inoculum. The cultures were tested on agar to observe their microbial activity. Toxicity to human red blood cells was also investigated. A reduction in the number of bacterial cells was observed for the S. aureus strain with chitosan salt modified with 10% acetic acid in ethanol. The antibacterial activity of the chitosan salts increased with the percentage of acid salts formed on the surface of the solid material (decreasing numbers of bacterial colonies or no growth). No reduction in growth was observed for the E. coli strain. The chitosan samples were either inactive or completely eliminated the bacterial cells. Antimicrobial activity was observed for chitosan salts with hydrochloric acid and acetic acid. Finally, 1H-NMR spectroscopy and FTIR spectroscopy were used to confirm the incorporation of the acid groups to the amino groups of chitosan.

17.
Int J Nanomedicine ; 17: 495-517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140461

RESUMEN

PURPOSE: Periodontal disease (PD), defined as oral inflammation caused by dental plaque, is an emerging problem. PD may lead to tooth loss, and treatment options are limited. In this study, we designed, synthesized, and characterized silver nanoparticles (AgNPs) conjugated with chlorhexidine (AgNPs-CHL) or metronidazole (AgNPs-PEG-MET) to determine whether they can be used to treat PDs. MATERIALS AND METHODS: AgNPs were synthesized and characterized by transmission electron microscopy, UV-vis spectrometry, thermogravimetric analyses, and dynamic light scattering. We determined the safety and the antimicrobial and anti-inflammatory properties of synthesized AgNPs in an in vitro model of periodontitis. Antimicrobial properties were determined by measuring the minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) on reference strains of bacteria and fungi. Human gingival fibroblast (HGF-1), murine macrophage (RAW264.7) and human foetal osteoblast (hFOB1.19) cells were used in the study. Lipopolysaccharide (LPS) was used to induce inflammation. Cytokine levels were measured using an enzyme-linked immunosorbent assay; metalloproteinase expression was measured using Western blotting. RESULTS: The synthesized AgNPs were spherical and narrow-dispersed with an average diameter of 13.4 nm ± 3.0 nm in the case of AgNPs-CHL and 3.72 nm ± 0.72 nm in the case of AgNPs-PEG-MET. Both types of AgNPs were active against bacteria and fungi. AgNPs-CHL proved to be a more potent antimicrobial agent, although they were more cytotoxic than AgNPs-PEG-MET; however, both demonstrated beneficial properties in nontoxic concentrations. AgNPs-CHL and AgNPs-PEG-MET decreased the production of proinflammatory cytokines IL-1ß, IL-6, IL-8 and TNFα. Both agents also decreased the levels of metalloproteinases MMP3 and MMP8, which may indicate that they will inhibit tissue degradation. CONCLUSION: AgNPs-CHL and AgNPs-PEG-MET may be possible therapeutic options for PD, as they have antibacterial and anti-inflammatory properties. However, to fully understand the potential of AgNPs, our in vitro findings must be evaluated in an in vivo model.


Asunto(s)
Nanopartículas del Metal , Periodontitis , Preparaciones Farmacéuticas , Animales , Clorhexidina , Humanos , Metronidazol , Ratones , Periodontitis/tratamiento farmacológico , Plata
18.
Antibiotics (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358146

RESUMEN

This study investigates short cationic antimicrobial lipopeptides composed of 2-4 amino acid residues and C12-C18 fatty acids attached to the N-terminal part of the peptides. The findings were discussed in the context of the relationship among biological activity, self-assembly, stability, and membrane interactions. All the lipopeptides showed the ability to self-assemble in PBS solution. In most cases, the critical aggregation concentration (CAC) much surpassed the minimal inhibitory concentration (MIC) values, suggesting that monomers are the main active form of lipopeptides. The introduction of ß-alanine into the peptide sequence resulted in a compound with a high propensity to fibrillate, which increased the peptide stability and activity against S. epidermidis and C. albicans and reduced the cytotoxicity against human keratinocytes. The results of our study indicated that the target of action of lipopeptides is the bacterial membrane. Interestingly, the type of peptide counterion may affect the degree of penetration of the lipid bilayer. In addition, the binding of the lipopeptide to the membrane of Gram-negative bacteria may lead to the release of calcium ions necessary for stabilization of the lipopolysaccharide layer.

19.
Pharmacol Rep ; 73(1): 163-171, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33219923

RESUMEN

INTRODUCTION: Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal tract disorders with complex etiology, with intestinal dysbiosis as the most prominent factor. In this study, we assessed the anti-inflammatory and antibacterial actions of the human cathelicidin LL-37 and its shortest active fragment, KR-12 in the mouse models of colitis. MATERIALS AND METHODS: Mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and dextran sulfate sodium (DSS) were used in the study. The extent of inflammation was evaluated based on the macro- and microscopic scores, quantification of myeloperoxidase (MPO) activity and microbiological analysis of stool samples. RESULTS: A preliminary study with LL-37 and KR-12 (1 mg/kg, ip, twice daily) showed a decrease in macroscopic and ulcer scores in the acute TNBS-induced model of colitis. We observed that KR-12 (5 mg/kg, ip, twice daily) reduced microscopic and ulcer scores in the semi-chronic and chronic TNBS-induced models of colitis compared with inflamed mice. Furthermore, qualitative and quantitative changes in colonic microbiota were observed: KR-12 (5 mg/kg, ip, twice daily) decreased the overall number of bacteria, Escherichia coli and coli group bacteria. In the semi-chronic DSS-induced model, KR-12 attenuated intestinal inflammation as demonstrated by a reduction in macroscopic score and colon damage score and MPO activity. CONCLUSIONS: We demonstrated that KR-12 alleviates inflammation in four different mouse models of colitis what suggests KR-12 and cathelicidins as a whole are worth being considered as a potential therapeutic option in the treatment of IBD.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Catelicidinas/química , Catelicidinas/farmacología , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Animales , Colitis/psicología , Colon/patología , Sulfato de Dextran , Heces/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/psicología , Masculino , Ratones , Ratones Endogámicos BALB C , Peroxidasa/metabolismo , Ácido Trinitrobencenosulfónico
20.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34829574

RESUMEN

Grape pomace is commonly considered a waste product of monovarietal red wine production. Methods: HPLC-DAD analysis was performed to determine the polyphenol and flavonoid contents of all the extracts obtained from Montepulciano d'Abruzzo red wine and grape skins whereas, GC-MS was applied to the determination of fatty acid composition in grape seeds oil. Biological characterization involves antioxidant and antimicrobial assays for all the extracts and seeds oil; Their ability to inhibit α-glucosidase, α-amylase, α-tyrosinase, and ChE enzymes was also detected, together with anti-inflammatory activity on wine, grape skin extracts, and seeds oil by lipoxygenase (5-LOX) and LPS-stimulated macrophage release assays. Data indicate significative polyphenols content (199.31 ± 7.21 mgGAE/g), antioxidant (CUPRAC assay (1036.98 mgTE/g)), enzymatic inhibition (α-tyrosinase: 151.30 ± 1.20 mgKAE/g) and anti-inflammatory activities for wine-organic extract 2, while the antimicrobial activity of grape skin decoction is higher than those reported by wine extracts on three bacterial strains. Interestingly only dealcoholized wine and wine-aqueous extract exerts inhibitory effects on α-glucosidase (20.62 ± 0.23 mmolACAE/g and 19.81 ± 0.03 mmolACAE/g, respectively), while seeds oil is rich in oleic and linoleic acids. These results confirm the strong antioxidant properties of Montepulciano d'Abruzzo grape pomace, suggesting the potential use of this waste product as functional food supplements in the human diet and in cosmeceutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA