Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38748857

RESUMEN

Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.

2.
Cell ; 184(14): 3660-3673.e18, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166615

RESUMEN

Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Familia de Multigenes , Nostoc/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Pollos , Microscopía por Crioelectrón , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Evolución Molecular , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestructura , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
3.
Cell ; 182(5): 1140-1155.e18, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814015

RESUMEN

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fusión de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , Endosomas/metabolismo , Células HeLa , Humanos , Polimerizacion , Transporte de Proteínas/fisiología
4.
Nat Rev Mol Cell Biol ; 17(8): 511-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27353479

RESUMEN

Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.


Asunto(s)
Forma de la Célula , Segregación Cromosómica , Animales , Humanos , Mitosis
5.
Nature ; 585(7823): 119-123, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848252

RESUMEN

At the end of mitosis, eukaryotic cells must segregate the two copies of their replicated genome into two new nuclear compartments1. They do this either by first dismantling and later reassembling the nuclear envelope in an 'open mitosis' or by reshaping an intact nucleus and then dividing it into two in a 'closed mitosis'2,3. Mitosis has been studied in a wide variety of eukaryotes for more than a century4, but how the double membrane of the nuclear envelope is split into two at the end of a closed mitosis without compromising the impermeability of the nuclear compartment remains unknown5. Here, using the fission yeast Schizosaccharomyces pombe (a classical model for closed mitosis5), genetics, live-cell imaging and electron tomography, we show that nuclear fission is achieved via local disassembly of nuclear pores within the narrow bridge that links segregating daughter nuclei. In doing so, we identify the protein Les1, which is localized to the inner nuclear envelope and restricts the process of local nuclear envelope breakdown to the bridge midzone to prevent the leakage of material from daughter nuclei. The mechanism of local nuclear envelope breakdown in a closed mitosis therefore closely mirrors nuclear envelope breakdown in open mitosis3, revealing an unexpectedly high conservation of nuclear remodelling mechanisms across diverse eukaryotes.


Asunto(s)
Mitosis , Membrana Nuclear/metabolismo , Schizosaccharomyces/citología , División Celular , Modelos Biológicos , Poro Nuclear/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura
6.
Proc Natl Acad Sci U S A ; 119(26): e2121868119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727980

RESUMEN

Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex. Strikingly, we found that the optogenetic activation of RhoA only influences spindle orientation when it is induced at both poles of the cell. Under these conditions, the sudden local increase in cortical tension induced by RhoA activation reduces pulling forces exerted by cortical regulators on astral microtubules. This leads to a perturbation of the balance of torques exerted on the spindle, which causes it to rotate. Thus, spindle rotation in response to mechanical stress is an emergent phenomenon arising from the interaction between the spindle positioning machinery and the cell cortex.


Asunto(s)
Microtúbulos , Huso Acromático , Estrés Mecánico , Actomiosina/metabolismo , Simulación por Computador , Citoplasma , Microtúbulos/metabolismo , Optogenética , Huso Acromático/fisiología , Proteína de Unión al GTP rhoA/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(49): e2201600119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454762

RESUMEN

The direction in which a cell divides is set by the orientation of its mitotic spindle and is important for determining cell fate, controlling tissue shape, and maintaining tissue architecture. Divisions parallel to the epithelial plane sustain tissue expansion. By contrast, divisions perpendicular to the plane promote tissue stratification and lead to the loss of epithelial cells from the tissue-an event that has been suggested to promote metastasis. Much is known about the molecular machinery involved in orienting the spindle, but less is known about the contribution of mechanical factors, such as tissue tension, in ensuring spindle orientation in the plane of the epithelium. This is important as epithelia are continuously subjected to mechanical stresses. To explore this further, we subjected suspended epithelial monolayers devoid of extracellular matrix to varying levels of tissue tension to study the orientation of cell divisions relative to the tissue plane. This analysis revealed that lowering tissue tension by compressing epithelial monolayers or by inhibiting myosin contractility increased the frequency of out-of-plane divisions. Reciprocally, increasing tissue tension by elevating cell contractility or by tissue stretching restored accurate in-plane cell divisions. Moreover, a characterization of the geometry of cells within these epithelia suggested that spindles can sense tissue tension through its impact on tension at subcellular surfaces, independently of their shape. Overall, these data suggest that accurate spindle orientation in the plane of the epithelium relies on a threshold level of tension at intercellular junctions.


Asunto(s)
Células Epiteliales , Uniones Intercelulares , Epitelio , División Celular , Matriz Extracelular
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983838

RESUMEN

Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III-mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III-dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.


Asunto(s)
Archaea/fisiología , División Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Citocinesis , Citoesqueleto/metabolismo , Sulfolobus acidocaldarius/fisiología
9.
EMBO J ; 38(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31015335

RESUMEN

Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Centrosoma/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Células Cultivadas , Citoesqueleto/metabolismo , Células HeLa , Humanos , Interfase/fisiología , Células Jurkat , Multimerización de Proteína/fisiología
10.
PLoS Comput Biol ; 18(10): e1010586, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36251703

RESUMEN

ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.


Asunto(s)
Citoesqueleto , Complejos de Clasificación Endosomal Requeridos para el Transporte , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Polimerizacion , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfato/metabolismo , Polímeros
11.
EMBO Rep ; 22(10): e52387, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34431205

RESUMEN

The isotropic metaphase actin cortex progressively polarizes as the anaphase spindle elongates during mitotic exit. This involves the loss of actomyosin cortex from opposing cell poles and the accumulation of an actomyosin belt at the cell centre. Although these spatially distinct cortical remodelling events are coordinated in time, here we show that they are independent of each other. Thus, actomyosin is lost from opposing poles in anaphase cells that lack an actomyosin ring owing to centralspindlin depletion. In examining potential regulators of this process, we identify a role for Aurora B kinase in actin clearance at cell poles. Upon combining Aurora B inhibition with centralspindlin depletion, cells exiting mitosis fail to change shape and remain completely spherical. Additionally, we demonstrate a requirement for Aurora B in the clearance of cortical actin close to anaphase chromatin in cells exiting mitosis with a bipolar spindle and in monopolar cells forced to divide while flat. Altogether, these data suggest a novel role for Aurora B activity in facilitating DNA-mediated polar relaxation at anaphase, polarization of the actomyosin cortex, and cell division.


Asunto(s)
Actomiosina , Citocinesis , Anafase , Aurora Quinasa B/genética , Mitosis , Huso Acromático
12.
Phys Rev Lett ; 129(26): 268101, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608212

RESUMEN

The sequential exchange of filament composition to increase filament curvature was proposed as a mechanism for how some biological polymers deform and cut membranes. The relationship between the filament composition and its mechanical effect is lacking. We develop a kinetic model for the assembly of composite filaments that includes protein-membrane adhesion, filament mechanics and membrane mechanics. We identify the physical conditions for such a membrane remodeling and show this mechanism of sequential polymer assembly lowers the energetic barrier for membrane deformation.


Asunto(s)
Citoesqueleto , Polímeros , Membranas , Polímeros/química
13.
PLoS Biol ; 17(6): e3000272, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31163022

RESUMEN

The Internet is rapidly changing the way the results of academic research are communicated within communities and with the wider public. In a push to accelerate change and make the results of research immediately and freely available online for all to read and use, the European Commission, with support from a group of high-profile funders, has proposed a plan to influence the way academic research is published. Here, we discuss the likely impact of this plan on the publishing landscape, the potential benefits, and some possible unintended consequences.


Asunto(s)
Difusión de la Información/métodos , Revisión de la Investigación por Pares/ética , Revisión de la Investigación por Pares/tendencias , Humanos , Difusión de la Información/ética , Internet , Publicaciones , Edición , Ciencia
14.
Nat Methods ; 15(5): 355-358, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29608556

RESUMEN

The throughput of cell mechanical characterization has recently approached that of conventional flow cytometers. However, this very sensitive, label-free approach still lacks the specificity of molecular markers. Here we developed an approach that combines real-time 1D-imaging fluorescence and deformability cytometry in one instrument (RT-FDC), thus opening many new research avenues. We demonstrated its utility by using subcellular fluorescence localization to identify mitotic cells and test for mechanical changes in those cells in an RNA interference screen.


Asunto(s)
Citofotometría/métodos , Imagen Óptica/métodos , Células HeLa , Células Madre Hematopoyéticas/fisiología , Humanos , Rayos Láser , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Interferencia de ARN , Reticulocitos , Análisis de la Célula Individual/métodos
15.
Nat Mater ; 19(1): 109-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451778

RESUMEN

Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5-80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a 'buckling threshold' of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis.


Asunto(s)
Actomiosina/química , Epitelio/fisiología , Animales , Cadherinas/fisiología , Fuerza Compresiva , Citoesqueleto , Perros , Elasticidad , Células Epiteliales/citología , Epitelio/embriología , Proteínas Fluorescentes Verdes , Células de Riñón Canino Madin Darby , Microscopía Confocal , Modelos Biológicos , Morfogénesis , Estrés Mecánico , Viscosidad
16.
RNA Biol ; 18(3): 421-434, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32957821

RESUMEN

CRISPR type III systems, which are abundantly found in archaea, recognize and degrade RNA in their specific response to invading nucleic acids. Therefore, these systems can be harnessed for gene knockdown technologies even in hyperthermophilic archaea to study essential genes. We show here the broader usability of this posttranscriptional silencing technology by expanding the application to further essential genes and systematically analysing and comparing silencing thresholds and escape mutants. Synthetic guide RNAs expressed from miniCRISPR cassettes were used to silence genes involved in cell division (cdvA), transcription (rpo8), and RNA metabolism (smAP2) of the two crenarchaeal model organisms Saccharolobus solfataricus and Sulfolobus acidocaldarius. Results were systematically analysed together with those obtained from earlier experiments of cell wall biogenesis (slaB) and translation (aif5A). Comparison of over 100 individual transformants revealed gene-specific silencing maxima ranging between 40 and 75%, which induced specific knockdown phenotypes leading to growth retardation. Exceedance of this threshold by strong miniCRISPR constructs was not tolerated and led to specific mutation of the silencing miniCRISPR array and phenotypical reversion of cultures. In two thirds of sequenced reverted cultures, the targeting spacers were found to be precisely excised from the miniCRISPR array, indicating a still hypothetical, but highly active recombination system acting on the dynamics of CRISPR spacer arrays. Our results indicate that CRISPR type III - based silencing is a broadly applicable tool to study in vivo functions of essential genes in Sulfolobales which underlies a specific mechanism to avoid malignant silencing overdose.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes Arqueales , Genes Esenciales , Genes Letales , Sulfolobales/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , División Celular/genética , Orden Génico , Marcación de Gen , Vectores Genéticos/genética , Mutación , Operón , Fenotipo , ARN Guía de Kinetoplastida , Sulfolobales/metabolismo
18.
Nature ; 524(7566): 489-92, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26168397

RESUMEN

Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.


Asunto(s)
Segregación Cromosómica , Drosophila melanogaster/citología , Cinetocoros/metabolismo , Proteína Fosfatasa 1/metabolismo , Actinas/metabolismo , Anafase , Animales , Polaridad Celular , Centrosoma/metabolismo , Cromatina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Cinetocoros/enzimología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Fosforilación , Transducción de Señal
19.
Phys Rev Lett ; 125(22): 228101, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33315453

RESUMEN

In this study, we investigate the role of the surface patterning of nanostructures for cell membrane reshaping. To accomplish this, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations and explore the solution space of ligand patterns on a nanoparticle that promote efficient and reliable cell uptake. Surprisingly, we find that in the regime of low ligand number the best-performing structures are characterized by ligands arranged into long one-dimensional chains that pattern the surface of the particle. We show that these chains of ligands provide particles with high rotational freedom and they lower the free energy barrier for membrane crossing. Our approach reveals a set of nonintuitive design rules that can be used to inform artificial nanoparticle construction and the search for inhibitors of viral entry.


Asunto(s)
Membrana Celular/química , Modelos Químicos , Nanoestructuras/química , Membrana Celular/metabolismo , Ligandos , Modelos Biológicos , Simulación de Dinámica Molecular , Propiedades de Superficie , Termodinámica
20.
BMC Biol ; 17(1): 82, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640700

RESUMEN

BACKGROUND: ESCRT-III is a membrane remodelling filament with the unique ability to cut membranes from the inside of the membrane neck. It is essential for the final stage of cell division, the formation of vesicles, the release of viruses, and membrane repair. Distinct from other cytoskeletal filaments, ESCRT-III filaments do not consume energy themselves, but work in conjunction with another ATP-consuming complex. Despite rapid progress in describing the cell biology of ESCRT-III, we lack an understanding of the physical mechanisms behind its force production and membrane remodelling. RESULTS: Here we present a minimal coarse-grained model that captures all the experimentally reported cases of ESCRT-III driven membrane sculpting, including the formation of downward and upward cones and tubules. This model suggests that a change in the geometry of membrane bound ESCRT-III filaments-from a flat spiral to a 3D helix-drives membrane deformation. We then show that such repetitive filament geometry transitions can induce the fission of cargo-containing vesicles. CONCLUSIONS: Our model provides a general physical mechanism that explains the full range of ESCRT-III-dependent membrane remodelling and scission events observed in cells. This mechanism for filament force production is distinct from the mechanisms described for other cytoskeletal elements discovered so far. The mechanistic principles revealed here suggest new ways of manipulating ESCRT-III-driven processes in cells and could be used to guide the engineering of synthetic membrane-sculpting systems.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas/metabolismo , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA