RESUMEN
Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.
Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/fisiopatología , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/fisiopatología , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/fisiopatología , Adolescente , Estatura , Índice de Masa Corporal , Peso Corporal , Niño , Preescolar , Cara/fisiopatología , Femenino , Gráficos de Crecimiento , Enfermedades Hematológicas/diagnóstico , Histona Demetilasas/genética , Humanos , Masculino , Mutación/genética , Enfermedades Vestibulares/diagnósticoRESUMEN
The Xq28 duplication involving the MECP2 gene (MECP2 duplication) has been mainly described in male patients with severe developmental delay (DD) associated with spasticity, stereotypic movements and recurrent infections. Nevertheless, only a few series have been published. We aimed to better describe the phenotype of this condition, with a focus on morphological and neurological features. Through a national collaborative study, we report a large French series of 59 affected males with interstitial MECP2 duplication. Most of the patients (93%) shared similar facial features, which evolved with age (midface hypoplasia, narrow and prominent nasal bridge, thick lower lip, large prominent ears), thick hair, livedo of the limbs, tapered fingers, small feet and vasomotor troubles. Early hypotonia and global DD were constant, with 21% of patients unable to walk. In patients able to stand, lower limbs weakness and spasticity led to a singular standing habitus: flexion of the knees, broad-based stance with pseudo-ataxic gait. Scoliosis was frequent (53%), such as divergent strabismus (76%) and hypermetropia (54%), stereotypic movements (89%), without obvious social withdrawal and decreased pain sensitivity (78%). Most of the patients did not develop expressive language, 35% saying few words. Epilepsy was frequent (59%), with a mean onset around 7.4 years of age, and often (62%) drug-resistant. Other medical issues were frequent: constipation (78%), and recurrent infections (89%), mainly lung. We delineate the clinical phenotype of MECP2 duplication syndrome in a large series of 59 males. Pulmonary hypertension appeared as a cause of early death in these patients, advocating its screening early in life.
Asunto(s)
Exotropía/genética , Hipertensión Pulmonar/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X/genética , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/fisiopatología , Exotropía/complicaciones , Exotropía/fisiopatología , Francia/epidemiología , Humanos , Hiperopía/complicaciones , Hiperopía/genética , Hiperopía/fisiopatología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Linaje , Fenotipo , Trastornos Somatosensoriales/genética , Trastornos Somatosensoriales/fisiopatología , Trastorno de Movimiento Estereotipado/complicaciones , Trastorno de Movimiento Estereotipado/genética , Trastorno de Movimiento Estereotipado/fisiopatología , Adulto JovenRESUMEN
BACKGROUND: Segmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV. PATIENTS AND METHODS: We used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3, MESP2, LFNG, HES7 and TBX6) in the first 48 patients and whole-exome sequencing (WES) in 28 relevant patients. RESULTS: Ten diagnoses, including four biallelic variants in TBX6, two biallelic variants in LFNG and DLL3, and one in MESP2 and HES7, were made with the gene panel, and two diagnoses, including biallelic variants in FLNB and one variant in MEOX1, were made by WES. The diagnostic yield of the gene panel was 10/73 (13.7%) in the global cohort but 8/10 (80%) in the subgroup meeting the SCD criteria; the diagnostic yield of WES was 2/28 (8%). CONCLUSION: After negative array CGH, targeted sequencing of the five known SCD genes should only be performed in patients who meet the diagnostic criteria of SCD. The low proportion of candidate genes identified by WES in our cohort suggests the need to consider more complex genetic architectures in cases of SDV.
Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Secuenciación del Exoma , Adolescente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Enfermedades del Desarrollo Óseo/fisiopatología , Niño , Preescolar , Femenino , Glicosiltransferasas/genética , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Mutación , Linaje , Fenotipo , Columna Vertebral/metabolismo , Columna Vertebral/patología , Proteínas de Dominio T Box/genéticaRESUMEN
Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.
Asunto(s)
Anomalías Múltiples/genética , Actinas/genética , Colon/anomalías , Mucosa Intestinal/metabolismo , Seudoobstrucción Intestinal/genética , Contracción Muscular/genética , Músculo Liso/metabolismo , Mutación Missense , Vejiga Urinaria/anomalías , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Actinas/química , Actinas/metabolismo , Colon/metabolismo , Colon/patología , Resultado Fatal , Femenino , Expresión Génica , Heterocigoto , Humanos , Recién Nacido , Seudoobstrucción Intestinal/metabolismo , Seudoobstrucción Intestinal/patología , Intestinos/patología , Masculino , Simulación de Dinámica Molecular , Músculo Liso/patología , Linaje , Multimerización de Proteína , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Adulto JovenRESUMEN
Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.
Asunto(s)
Cara/anomalías , Síndromes Orofaciodigitales/genética , Anomalías Múltiples/genética , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Femenino , Heterocigoto , Humanos , Masculino , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Proteínas/genética , Retinitis PigmentosaRESUMEN
Interstitial 2p15p16.1 microdeletion is a rare chromosomal syndrome previously reported in 33 patients. It is characterized by intellectual disability, developmental delay, autism spectrum disorders, microcephaly, short stature, dysmorphic features, and multiple congenital organ defects. It is defined as a contiguous gene syndrome and two critical regions have been proposed at 2p15 and 2p16.1 loci. Nevertheless, patients with deletion of both critical regions shared similar features of the phenotype and the correlation genotype-phenotype is still unclear. We review all published cases and describe three additional patients, to define the phenotype-genotype correlation more precisely. We reported on two patients including the first prenatal case described so far, carrying a 2p15 deletion affecting two genes: XPO1 and part of USP34. Both patients shared similar features including facial dysmorphism and cerebral abnormalities. We considered the genes involved in the deleted segment to further understand the abnormal phenotype. The third case we described here was a 4-year-old boy with a heterozygous de novo 427 kb deletion encompassing BCL11A and PAPOLG at 2p16.1. He displayed speech delay, autistic traits, and motor stereotypies associated with brain structure abnormalities. We discuss the contribution of the genes included in the deletion to the abnormal phenotype. Our three new patients compared to previous cases, highlighted that despite two critical regions, both distal deletion at 2p16.1 and proximal deletion at 2p15 are associated with phenotypes that are very close to each other. Finally, we also discuss the genetic counseling of this microdeletion syndrome particularly in the course of prenatal diagnosis.
Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Discapacidades del Desarrollo/genética , Microcefalia/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Proteínas Portadoras/genética , Preescolar , Cromosomas Humanos Par 2/genética , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Carioferinas/genética , Imagen por Resonancia Magnética , Masculino , Microcefalia/diagnóstico por imagen , Microcefalia/fisiopatología , Proteínas Nucleares/genética , Fenotipo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras , Proteasas Ubiquitina-Específicas/genética , Proteína Exportina 1RESUMEN
Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.
Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Holoprosencefalia/genética , Mutación , Femenino , Predisposición Genética a la Enfermedad , Proteínas Hedgehog/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Análisis de Secuencia de ADN/métodos , Transducción de SeñalRESUMEN
Non-syndromic arthrogryposis multiplex congenita (AMC) is characterized by multiple congenital contractures resulting from reduced fetal mobility. Genetic mapping and whole exome sequencing (WES) were performed in 31 multiplex and/or consanguineous undiagnosed AMC families. Although this approach identified known AMC genes, we here report pathogenic mutations in two new genes. Homozygous frameshift mutations in CNTNAP1 were found in four unrelated families. Patients showed a marked reduction in motor nerve conduction velocity (<10 m/s) and transmission electron microscopy (TEM) of sciatic nerve in the index cases revealed severe abnormalities of both nodes of Ranvier width and myelinated axons. CNTNAP1 encodes CASPR, an essential component of node of Ranvier domains which underlies saltatory conduction of action potentials along the myelinated axons, an important process for neuronal function. A homozygous missense mutation in adenylate cyclase 6 gene (ADCY6) was found in another family characterized by a lack of myelin in the peripheral nervous system (PNS) as determined by TEM. Morpholino knockdown of the zebrafish orthologs led to severe and specific defects in peripheral myelin in spite of the presence of Schwann cells. ADCY6 encodes a protein that belongs to the adenylate cyclase family responsible for the synthesis of cAMP. Elevation of cAMP can mimic axonal contact in vitro and upregulates myelinating signals. Our data indicate an essential and so far unknown role of ADCY6 in PNS myelination likely through the cAMP pathway. Mutations of genes encoding proteins of Ranvier domains or involved in myelination of Schwann cells are responsible for novel and severe human axoglial diseases.
Asunto(s)
Adenilil Ciclasas/genética , Artrogriposis/genética , Artrogriposis/patología , Moléculas de Adhesión Celular Neuronal/genética , Axones/patología , Axones/ultraestructura , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mutación/genética , Vaina de Mielina/patología , Sistema Nervioso Periférico/patología , Sistema Nervioso Periférico/ultraestructura , Embarazo , Células de Schwann/metabolismoRESUMEN
Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans.
Asunto(s)
Aldehído Deshidrogenasa/genética , Anoftalmos/enzimología , Anoftalmos/genética , Genes Recesivos/genética , Microftalmía/enzimología , Microftalmía/genética , Mutación/genética , Aldehído Oxidorreductasas , Segregación Cromosómica/genética , Exones/genética , Femenino , Ligamiento Genético , Células HEK293 , Homocigoto , Humanos , Intrones/genética , Masculino , Proteínas Mutantes/metabolismo , Linaje , Análisis de Secuencia de ADNRESUMEN
Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.
Asunto(s)
Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Estudios de Asociación Genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Mutación , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenotipo , Alelos , Sustitución de Aminoácidos , Exones , Facies , Femenino , Filaminas/genética , Humanos , Masculino , Linaje , Análisis de Secuencia de ADNRESUMEN
Our study was designed to analyze prenatal manifestations in patients affected with cardio-facio-cutaneous syndrome (CFCS), in order to define indications of DNA testing in utero. Prenatal features were extracted from a national database and additional data were collected from 16 families contacted through the French association of CFC-Costello syndrome. We collected results of ultrasound scan (USS) biometrics, presence of congenital birth defects, and polyhydramnios. From the database, increased nuchal translucency was present in 13% of pregnancies, polyhydramnios in 52%, macrosomia and/or macrocephaly in 16%. Of the 16 pregnancies, 81% were complicated by abnormal USS findings. Polyhydramnios was reported in 67%. Head circumference, biparietal diameter, and abdominal circumference were above the 90th centile in 72%, 83% and, 81% of fetuses, respectively. Contrasting with macrosomia, femur length was below the 10th centile in 38%. Urinary tract abnormalities were found in 47% of fetuses. Most CFCS fetuses showed a combination of macrocephaly, macrosomia, and polyhydramnios, contrasting with relatively short femora. This growth pattern is also seen in Costello syndrome. We suggest that screening for CFCS and Costello gene mutations could be proposed in pregnancies showing this unusual pattern of growth parameters.
Asunto(s)
Anomalías Múltiples/genética , Cara/anomalías , Cardiopatías Congénitas/diagnóstico , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Anomalías Cutáneas/diagnóstico , Anomalías Múltiples/patología , Femenino , Feto/anomalías , Feto/metabolismo , Feto/patología , Cardiopatías Congénitas/genética , Humanos , Recién Nacido , Masculino , Fenotipo , Embarazo , Pronóstico , Anomalías Cutáneas/genéticaRESUMEN
Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.
Asunto(s)
Encefalopatías/genética , Cromosomas Humanos X/genética , Duplicación de Gen , Imagen por Resonancia Magnética/métodos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Encefalopatías/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Linaje , Fenotipo , Pronóstico , Adulto JovenRESUMEN
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.
Asunto(s)
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Estudios de Asociación Genética , Impresión Genómica , Fenotipo , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Alineación de SecuenciaRESUMEN
Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells.
Asunto(s)
Proteínas Portadoras/genética , Ataxia Cerebelosa/genética , Mutación , Retinitis Pigmentosa/genética , Adolescente , Alelos , Proteínas Portadoras/metabolismo , Niño , Preescolar , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Linaje , Transporte de Proteínas/genéticaRESUMEN
Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-ß signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-ß-signaling pathway.
Asunto(s)
Aracnodactilia/genética , Craneosinostosis/genética , Proteínas de Unión al ADN/genética , Exones , Genes Dominantes , Síndrome de Marfan/genética , Mutación , Proteínas Proto-Oncogénicas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Proteínas de Unión al ADN/química , Facies , Femenino , Orden Génico , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Fenotipo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Alineación de Secuencia , Adulto JovenRESUMEN
Interstitial deletion 1q24q25 is a rare rearrangement associated with intellectual disability, growth retardation, abnormal extremities and facial dysmorphism. In this study, we describe the largest series reported to date, including 18 patients (4M/14F) aged from 2 days to 67 years and comprising two familial cases. The patients presented with a characteristic phenotype including mild to moderate intellectual disability (100%), intrauterine (92%) and postnatal (94%) growth retardation, microcephaly (77%), short hands and feet (83%), brachydactyly (70%), fifth finger clinodactyly (78%) and facial dysmorphism with a bulbous nose (72%), abnormal ears (67%) and micrognathia (56%). Other findings were abnormal palate (50%), single transverse palmar crease (53%), renal (38%), cardiac (38%), and genital (23%) malformations. The deletions were characterized by chromosome microarray. They were of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1:164,501,003-167,022,133), associated with cardiac and renal anomalies, a distal one (chr1:178,514,910-181,269,712) and an intermediate 490 kb region (chr1:171970575-172460683, hg19), deleted in the most of the patients, and containing DNM3, MIR3120 and MIR214 that may play an important role in the phenotype. However, this genetic region seems complex with multiple regions giving rise to the same phenotype.
Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Anomalías Múltiples/clasificación , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Anciano , Niño , Preescolar , Cromosomas Humanos Par 1/genética , Hibridación Genómica Comparativa , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Discapacidad Intelectual/clasificación , Discapacidad Intelectual/fisiopatología , Masculino , Persona de Mediana Edad , FenotipoRESUMEN
BACKGROUND: Infants with Noonan syndrome (NS) are predisposed to developing juvenile myelomonocytic leukaemia (JMML) or JMML-like myeloproliferative disorders (MPD). Whereas sporadic JMML is known to be aggressive, JMML occurring in patients with NS is often considered as benign and transitory. However, little information is available regarding the occurrence and characteristics of JMML in NS. METHODS AND RESULTS: Within a large prospective cohort of 641 patients with a germline PTPN11 mutation, we identified MPD features in 36 (5.6%) patients, including 20 patients (3%) who fully met the consensus diagnostic criteria for JMML. Sixty percent of the latter (12/20) had severe neonatal manifestations, and 10/20 died in the first month of life. Almost all (11/12) patients with severe neonatal JMML were males. Two females who survived MPD/JMML subsequently developed another malignancy during childhood. Although the risk of developing MPD/JMML could not be fully predicted by the underlying PTPN11 mutation, some germline PTPN11 mutations were preferentially associated with myeloproliferation: 10/48 patients with NS (20.8%) with a mutation in codon Asp61 developed MPD/JMML in infancy. Patients with a p.Thr73Ile mutation also had more chances of developing MPD/JMML but with a milder clinical course. SNP array and whole exome sequencing in paired tumoral and constitutional samples identified no second acquired somatic mutation to explain the occurrence of myeloproliferation. CONCLUSIONS: JMML represents the first cause of death in PTPN11-associated NS. Few patients have been reported so far, suggesting that JMML may sometimes be overlooked due to early death, comorbidities or lack of confirmatory tests.
Asunto(s)
Leucemia Mielomonocítica Juvenil/complicaciones , Leucemia Mielomonocítica Juvenil/genética , Síndrome de Noonan/complicaciones , Síndrome de Noonan/genética , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Leucemia Mielomonocítica Juvenil/mortalidad , Leucemia Mielomonocítica Juvenil/fisiopatología , Masculino , Mutación , Síndrome de Noonan/mortalidad , Síndrome de Noonan/fisiopatología , Estudios Prospectivos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genéticaRESUMEN
Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two heterozygous KRAS mutations in three individuals and eight BRAF mutations in 16 individuals, suggesting that dysregulation of the RAS-RAF-ERK pathway is a common molecular basis for the three related disorders.
Asunto(s)
Cara/anomalías , Cardiopatías Congénitas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas/genética , Anomalías Cutáneas/genética , Secuencia de Aminoácidos , Humanos , Discapacidad Intelectual/genética , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas p21(ras) , Valores de Referencia , Síndrome , Proteínas rasRESUMEN
Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.
Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/enzimología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Ribonucleasa H/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN/genética , Encefalitis Viral/congénito , Femenino , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ribonucleasa H/química , Ribonucleasa H/metabolismo , SíndromeRESUMEN
Mandibulofacial dysostosis, Guion-Almeida type (MFDGA) is a recently delineated multiple congenital anomalies/mental retardation syndrome characterized by the association of mandibulofacial dysostosis (MFD) with external ear malformations, hearing loss, cleft palate, choanal atresia, microcephaly, intellectual disability, oesophageal atresia (OA), congenital heart defects (CHDs), and radial ray defects. MFDGA emerges as a clinically recognizable entity, long underdiagnosed due to highly variable presentations. The main differential diagnoses are CHARGE and Feingold syndromes, oculoauriculovertebral spectrum, and other MFDs. EFTUD2, located on 17q21.31, encodes a component of the major spliceosome and is disease causing in MFDGA, due to heterozygous loss-of-function (LoF) mutations. Here, we describe a series of 36 cases of MFDGA, including 24 previously unreported cases, and we review the literature in order to delineate the clinical spectrum ascribed to EFTUD2 LoF. MFD, external ear anomalies, and intellectual deficiency occur at a higher frequency than microcephaly. We characterize the evolution of the facial gestalt at different ages and describe novel renal and cerebral malformations. The most frequent extracranial malformation in this series is OA, followed by CHDs and skeletal abnormalities. MFDGA is probably more frequent than other syndromic MFDs such as Nager or Miller syndromes. Although the wide spectrum of malformations complicates diagnosis, characteristic facial features provide a useful handle.