Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Sci Food Agric ; 101(7): 2718-2726, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33124041

RESUMEN

BACKGROUND: The poultry industry is one of the fastest growing sectors, and it generates considerable quantities of chicken gizzards (CG) every day. However, due to their hard texture and high microbial load, and due to cultural beliefs, they are not preferred by consumers. Chicken gizzards are a substantial source of proteins, iron, and other nutrients, which can be used effectively to produce nutraceuticals, rich in peptides (antioxidants and antibacterial), bio-iron, essential free amino acids, and fatty acids vital for human health. RESULTS: Lactic acid fermentation of CG by Pediococcus acidilactici ATTC 8042 increased the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), azino-bis (3-ethylbenzothiaziline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) by up to 26 times compared with unfermented CG (P < 0.05). The amount of hydrolysis and solvents (ethanol and water) used for extracting protein hydrolysates significantly affected the antioxidant properties. Moreover, fermented CG showed a negligible reduction in bio-iron (2-3%) compared with heat-processed CG (85 °C for 15 min), in which bio-iron was reduced by up to 20.3% (P < 0.05). The presence of unsaturated fatty acids such as C20:4 and C22:4 n-6 indicated a low level of lipid oxidation. CONCLUSION: Fermented CG, with its reasonably high antioxidant and antibacterial activity, together with a substantial amount of bio-iron and other nutritional components can serve as a functional food or feed additive to reduce oxidative stress and to treat iron deficiency. © 2020 Society of Chemical Industry.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Molleja de las Aves/microbiología , Hierro/farmacología , Pediococcus acidilactici/metabolismo , Animales , Proteínas Aviares/metabolismo , Proteínas Aviares/farmacología , Biotransformación , Pollos , Fermentación , Molleja de las Aves/metabolismo , Hierro/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología
2.
Crit Rev Microbiol ; 46(5): 578-599, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32954887

RESUMEN

Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana , Animales , Antibacterianos/historia , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/historia , Transferencia de Gen Horizontal , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Plásmidos/genética , Plásmidos/metabolismo
3.
J Food Sci Technol ; 52(9): 6083-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26345033

RESUMEN

A simple, rapid and simultaneous method for the quantitative evaluation of squalene and cholesterol in oil recovered from different body parts of fresh water and marine fish species was developed using reverse phase High performance liquid chromatography (RP-HPLC). A modified fractional crystallization method was developed using absolute ethanol as a solvent to obtain a fraction of squalene and cholesterol in the oil extracted from different body parts of fish samples. Elution of squalene and cholesterol was carried out isocratically with 100 % acetonitrile at 195 nm by diode array detector. Excellent linearity of the calibration curve was observed. The limit of detection for squalene and cholesterol were found to be 5.0 ng ml(-1) and 1.0 µg ml(-1) respectively. A possible correlation was established by determining the ratio between cholesterol and squalene which was found to be ranging from 2 to 10. This method was successfully employed for the determination of squalene and cholesterol in the above mentioned samples.

4.
Open Life Sci ; 19(1): 20220903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027422

RESUMEN

Catfish (Clarias magur) is a popular freshwater fish food worldwide. The processing of this fish generates a significant amount of waste, mainly in the form of viscera, which constitutes around 10-12% of the fish's total weight. This study was focused on extracting polyunsaturated fatty acid (PUFA)-rich oil from catfish viscera, aiming to enhance the extraction process and make the production of oil and handling of fish byproducts more cost-effective. The wet reduction method, a solvent-free approach, was used for extraction, with yield optimization done via the Box-Behnken design. The resulting oil was evaluated for its oxidative quality and chemical characteristics. The optimal conditions for the wet rendering process were as follows: viscera to water ratio, 1:0.5 (w/v); temperature, 90℃; and time, 20 min, yielding 12.40 g/100 g of oil. The oil extracted under optimal wet rendering conditions had quality and oxidative stability comparable to solvent extraction and fewer secondary oxidation compounds. This oil had a higher PUFA content, specifically a 4:1 ratio of omega 6 to omega 3. Such oil, derived from catfish viscera, is suitable for the food industry due to its solvent-free extraction method.

5.
Prev Nutr Food Sci ; 29(1): 47-62, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38576886

RESUMEN

Here we test a method of incorporating of plant extracts into popular snack foods to help control diabetes. Since some fresh vegetables contain antidiabetic compounds, ultrasound-assisted extraction was used to optimize their extraction of from spring onions, bunching onions, and celery for later incorporation into crackers. We compared various concentrations of ethanol used during extraction, after which they were exposed to an ultrasound processor whose amplitude and sonication time were also varied. The optimal extraction conditions were found to be an ethanol concentration of 44.08%, an amplitude of 80%, and a sonication time of 30 min. This resulted in the highest level of α-glucosidase inhibitory activity (i.e., 1,449.73 mmol ACE/g) and the highest extraction yield (i.e., 24.16%). The extract produced from these optimum conditions was then used as a constituent component of crackers at 0.625%, 1.25%, or 2.5% w/w. These biscuits were then produced at baking temperatures of 140°C, 150°C, or 160°C. We then measured the physical characteristics and bioactivities of sample biscuits from each treatment. We found that biscuits containing 2.5% vegetable combination extract and baked at 140°C had the highest total phenolic content, the strongest antioxidant performance, and showed the most substantial antidiabetic and antiobesity effects. Here we establish conditions for the effective extraction of antidiabetic functional ingredients via ultrasound from green leafy vegetables. We also provide a method of using these ingredients to prepare crackers with the aim of developing a functional antidiabetic snack food.

6.
Open Life Sci ; 18(1): 20220789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027224

RESUMEN

This study aimed to efficiently utilize catfish heads, enhancing the oil extraction process while improving the cost-effectiveness of fish byproduct management. The study employed the wet rendering method, a solvent-free approach, utilizing a two-factor Taguchi orthogonal array design to identify critical parameters for optimizing oil yield and ensuring high-quality oil attributes. The extraction temperature (80-120°C) and time (5-25 min) were chosen as variables in the wet rendering process. Range analysis identified the extraction time as a more significant (p < 0.05) factor for most parameters, including oil yield, oil recovery, acid value, free fatty acids, peroxide value, and thiobarbituric acid reactive substances. The extraction temperature was more significant (p < 0.05) for oil color. Consequently, the wet rendering method was optimized, resulting in an extraction temperature of 80°C and an extraction time of 25 min, yielding the highest oil yield. This optimized wet rendering process recovered 6.37 g/100 g of oil with an impressive 54.16% oil recovery rate, demonstrating comparable performance to traditional solvent extraction methods. Moreover, Fourier transfer infrared spectra analysis revealed distinct peaks associated with triacylglycerols and polyunsaturated fatty acids (PUFA). The oil recovered under optimized conditions contained higher levels of PUFA, including oleic acid (189.92 µg/g of oil), linoleic acid (169.92 µg/g of oil), eicosapentaenoic acid (17.41 µg/g of oil), and docosahexaenoic acid (20.82 µg/g of oil). Volatile compound analysis revealed lower levels of secondary oxidation compounds under optimized conditions. This optimized wet rendering method offers practical advantages in terms of cost-efficiency, sustainability, reduced environmental impact, and enhanced oil quality, making it an attractive option for the fish processing industries. Future research possibilities may include the purification of the catfish head oil and its application in the food and pharmaceutical industries.

7.
Int J Biol Macromol ; 163: 1498-1517, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781120

RESUMEN

Fibrinolytic enzymes are proteases responsible for cleavage of fibrin mesh in thrombus clots, which are the primary causative agents in cardiovascular diseases. Developing safe, effective and cheap thrombolytic agents are important for prevention and cure of thrombosis. Although a wide variety of sources have been discovered for fibrinolytic enzymes, only few of them have been employed in clinical and therapeutic applications due to the drawbacks such as high cost of production, low stability of enzyme or therapeutic side effects. However, the discovery of new fibrinolytic enzymes requires complex purification stages and characterization, which gives an insight into their diverse modes of action. Post-discovery, approaches such as a) statistical optimization for fermentative bioprocessing and b) genetic engineering are advantageous in providing economic viability by finding simple and cost-effective medium, strain development with sufficient nutrient supplements for stable and high-level production of recombinant enzyme. This review provides a comprehensive understanding of different sources, purification techniques, production through genetic engineering approaches and statistical optimization of fermentation parameters as proteases have a wide variety of industrial and biotechnological applications making 60% of total enzyme market worldwide. New strategies targeting increased enzyme yields, non-denaturing environments, improved stability, enzyme activity and strain improvement have been discussed.


Asunto(s)
Fibrinolíticos/química , Animales , Fermentación , Alimentos Fermentados , Fibrina/química , Ingeniería Genética/métodos , Humanos , Péptido Hidrolasas/química , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA