Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Ophthalmol ; 108(2): 268-273, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36746615

RESUMEN

BACKGROUND/AIMS: Deep learning systems (DLSs) for diabetic retinopathy (DR) detection show promising results but can underperform in racial and ethnic minority groups, therefore external validation within these populations is critical for health equity. This study evaluates the performance of a DLS for DR detection among Indigenous Australians, an understudied ethnic group who suffer disproportionately from DR-related blindness. METHODS: We performed a retrospective external validation study comparing the performance of a DLS against a retinal specialist for the detection of more-than-mild DR (mtmDR), vision-threatening DR (vtDR) and all-cause referable DR. The validation set consisted of 1682 consecutive, single-field, macula-centred retinal photographs from 864 patients with diabetes (mean age 54.9 years, 52.4% women) at an Indigenous primary care service in Perth, Australia. Three-person adjudication by a panel of specialists served as the reference standard. RESULTS: For mtmDR detection, sensitivity of the DLS was superior to the retina specialist (98.0% (95% CI, 96.5 to 99.4) vs 87.1% (95% CI, 83.6 to 90.6), McNemar's test p<0.001) with a small reduction in specificity (95.1% (95% CI, 93.6 to 96.4) vs 97.0% (95% CI, 95.9 to 98.0), p=0.006). For vtDR, the DLS's sensitivity was again superior to the human grader (96.2% (95% CI, 93.4 to 98.6) vs 84.4% (95% CI, 79.7 to 89.2), p<0.001) with a slight drop in specificity (95.8% (95% CI, 94.6 to 96.9) vs 97.8% (95% CI, 96.9 to 98.6), p=0.002). For all-cause referable DR, there was a substantial increase in sensitivity (93.7% (95% CI, 91.8 to 95.5) vs 74.4% (95% CI, 71.1 to 77.5), p<0.001) and a smaller reduction in specificity (91.7% (95% CI, 90.0 to 93.3) vs 96.3% (95% CI, 95.2 to 97.4), p<0.001). CONCLUSION: The DLS showed improved sensitivity and similar specificity compared with a retina specialist for DR detection. This demonstrates its potential to support DR screening among Indigenous Australians, an underserved population with a high burden of diabetic eye disease.


Asunto(s)
Pueblos de Australasia , Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Australia , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Etnicidad , Grupos Minoritarios , Estudios Retrospectivos , Aborigenas Australianos e Isleños del Estrecho de Torres
2.
Transl Vis Sci Technol ; 12(12): 11, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38079169

RESUMEN

Purpose: Real-world evaluation of a deep learning model that prioritizes patients based on risk of progression to moderate or worse (MOD+) diabetic retinopathy (DR). Methods: This nonrandomized, single-arm, prospective, interventional study included patients attending DR screening at four centers across Thailand from September 2019 to January 2020, with mild or no DR. Fundus photographs were input into the model, and patients were scheduled for their subsequent screening from September 2020 to January 2021 in order of predicted risk. Evaluation focused on model sensitivity, defined as correctly ranking patients that developed MOD+ within the first 50% of subsequent screens. Results: We analyzed 1,757 patients, of which 52 (3.0%) developed MOD+. Using the model-proposed order, the model's sensitivity was 90.4%. Both the model-proposed order and mild/no DR plus HbA1c had significantly higher sensitivity than the random order (P < 0.001). Excluding one major (rural) site that had practical implementation challenges, the remaining sites included 567 patients and 15 (2.6%) developed MOD+. Here, the model-proposed order achieved 86.7% versus 73.3% for the ranking that used DR grade and hemoglobin A1c. Conclusions: The model can help prioritize follow-up visits for the largest subgroups of DR patients (those with no or mild DR). Further research is needed to evaluate the impact on clinical management and outcomes. Translational Relevance: Deep learning demonstrated potential for risk stratification in DR screening. However, real-world practicalities must be resolved to fully realize the benefit.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Estudios Prospectivos , Hemoglobina Glucada , Medición de Riesgo
3.
Nat Biomed Eng ; 7(6): 756-779, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37291435

RESUMEN

Machine-learning models for medical tasks can match or surpass the performance of clinical experts. However, in settings differing from those of the training dataset, the performance of a model can deteriorate substantially. Here we report a representation-learning strategy for machine-learning models applied to medical-imaging tasks that mitigates such 'out of distribution' performance problem and that improves model robustness and training efficiency. The strategy, which we named REMEDIS (for 'Robust and Efficient Medical Imaging with Self-supervision'), combines large-scale supervised transfer learning on natural images and intermediate contrastive self-supervised learning on medical images and requires minimal task-specific customization. We show the utility of REMEDIS in a range of diagnostic-imaging tasks covering six imaging domains and 15 test datasets, and by simulating three realistic out-of-distribution scenarios. REMEDIS improved in-distribution diagnostic accuracies up to 11.5% with respect to strong supervised baseline models, and in out-of-distribution settings required only 1-33% of the data for retraining to match the performance of supervised models retrained using all available data. REMEDIS may accelerate the development lifecycle of machine-learning models for medical imaging.


Asunto(s)
Aprendizaje Automático , Aprendizaje Automático Supervisado , Diagnóstico por Imagen
4.
Ophthalmol Retina ; 6(5): 398-410, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999015

RESUMEN

PURPOSE: To validate the generalizability of a deep learning system (DLS) that detects diabetic macular edema (DME) from 2-dimensional color fundus photographs (CFP), for which the reference standard for retinal thickness and fluid presence is derived from 3-dimensional OCT. DESIGN: Retrospective validation of a DLS across international datasets. PARTICIPANTS: Paired CFP and OCT of patients from diabetic retinopathy (DR) screening programs or retina clinics. The DLS was developed using data sets from Thailand, the United Kingdom, and the United States and validated using 3060 unique eyes from 1582 patients across screening populations in Australia, India, and Thailand. The DLS was separately validated in 698 eyes from 537 screened patients in the United Kingdom with mild DR and suspicion of DME based on CFP. METHODS: The DLS was trained using DME labels from OCT. The presence of DME was based on retinal thickening or intraretinal fluid. The DLS's performance was compared with expert grades of maculopathy and to a previous proof-of-concept version of the DLS. We further simulated the integration of the current DLS into an algorithm trained to detect DR from CFP. MAIN OUTCOME MEASURES: The superiority of specificity and noninferiority of sensitivity of the DLS for the detection of center-involving DME, using device-specific thresholds, compared with experts. RESULTS: The primary analysis in a combined data set spanning Australia, India, and Thailand showed the DLS had 80% specificity and 81% sensitivity, compared with expert graders, who had 59% specificity and 70% sensitivity. Relative to human experts, the DLS had significantly higher specificity (P = 0.008) and noninferior sensitivity (P < 0.001). In the data set from the United Kingdom, the DLS had a specificity of 80% (P < 0.001 for specificity of >50%) and a sensitivity of 100% (P = 0.02 for sensitivity of > 90%). CONCLUSIONS: The DLS can generalize to multiple international populations with an accuracy exceeding that of experts. The clinical value of this DLS to reduce false-positive referrals, thus decreasing the burden on specialist eye care, warrants a prospective evaluation.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Humanos , Edema Macular/diagnóstico , Edema Macular/etiología , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Estados Unidos
5.
Lancet Digit Health ; 3(1): e10-e19, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735063

RESUMEN

BACKGROUND: Diabetic retinopathy screening is instrumental to preventing blindness, but scaling up screening is challenging because of the increasing number of patients with all forms of diabetes. We aimed to create a deep-learning system to predict the risk of patients with diabetes developing diabetic retinopathy within 2 years. METHODS: We created and validated two versions of a deep-learning system to predict the development of diabetic retinopathy in patients with diabetes who had had teleretinal diabetic retinopathy screening in a primary care setting. The input for the two versions was either a set of three-field or one-field colour fundus photographs. Of the 575 431 eyes in the development set 28 899 had known outcomes, with the remaining 546 532 eyes used to augment the training process via multitask learning. Validation was done on one eye (selected at random) per patient from two datasets: an internal validation (from EyePACS, a teleretinal screening service in the USA) set of 3678 eyes with known outcomes and an external validation (from Thailand) set of 2345 eyes with known outcomes. FINDINGS: The three-field deep-learning system had an area under the receiver operating characteristic curve (AUC) of 0·79 (95% CI 0·77-0·81) in the internal validation set. Assessment of the external validation set-which contained only one-field colour fundus photographs-with the one-field deep-learning system gave an AUC of 0·70 (0·67-0·74). In the internal validation set, the AUC of available risk factors was 0·72 (0·68-0·76), which improved to 0·81 (0·77-0·84) after combining the deep-learning system with these risk factors (p<0·0001). In the external validation set, the corresponding AUC improved from 0·62 (0·58-0·66) to 0·71 (0·68-0·75; p<0·0001) following the addition of the deep-learning system to available risk factors. INTERPRETATION: The deep-learning systems predicted diabetic retinopathy development using colour fundus photographs, and the systems were independent of and more informative than available risk factors. Such a risk stratification tool might help to optimise screening intervals to reduce costs while improving vision-related outcomes. FUNDING: Google.


Asunto(s)
Aprendizaje Profundo , Retinopatía Diabética/diagnóstico , Anciano , Área Bajo la Curva , Técnicas de Diagnóstico Oftalmológico , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Fotograbar , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Medición de Riesgo/métodos
6.
Nat Commun ; 11(1): 130, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913272

RESUMEN

Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC-AUC of 0.89 (95% CI: 0.87-0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82-85%), but only half the specificity (45-50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81-0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85-0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging.


Asunto(s)
Retinopatía Diabética/diagnóstico por imagen , Edema Macular/diagnóstico por imagen , Anciano , Aprendizaje Profundo , Retinopatía Diabética/genética , Femenino , Humanos , Imagenología Tridimensional , Edema Macular/genética , Masculino , Persona de Mediana Edad , Mutación , Fotograbar , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA