Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Mol Neurosci ; 16: 1214439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465362

RESUMEN

A variety of proteins can be encoded by a single gene via the differential splicing of exons. In neurons this form of alternative splicing can be controlled by activity-dependent calcium signaling, leading to the properties of proteins being altered, including ion channels, neurotransmitter receptors and synaptic cell adhesion molecules. The pre-synaptic cell adhesion molecule Neurexin 1 (Nrxn1) is alternatively spliced at splice-site 4 (SS4) which governs exon 22 inclusion (SS4+) and consequently postsynaptic NMDA receptor responses. Nrxn1 was reported to be subject to a delayed-onset shift in Nrxn1 SS4 splicing resulting in increased exon 22 inclusion, involving epigenetic mechanisms which, if disrupted, reduce memory stability. Exon inclusion at SS4 represented one of hundreds of exons reported to be subject to a genome-wide shift in fractional exon inclusion following membrane depolarization with high extracellular K+ that was delayed in onset. We report that high K+ does not increase the SS4+/SS4- ratio in cortical neurons, but does induce a delayed-onset NMDA receptor-dependent neuronal death. In mixed neuronal/astrocyte cultures this neuronal death results in an increase in the astrocyte: neuron ratio, and a misleading increase in SS4+/SS4- ratio attributable to astrocytes having a far higher SS4+/SS4- ratio than neurons, rather than any change in the neurons themselves. We reassessed the previously reported genome-wide delayed-onset shift in fractional exon inclusion after high K+ exposure. This revealed that the reported changes correlated strongly with differences in exon inclusion level between astrocytes and neurons, and was accompanied by a strong decrease in the ratio of neuron-specific: astrocyte-specific gene expression. As such, these changes can be explained by the neurotoxic nature of the stimulation paradigm, underlining the importance of NMDA receptor blockade when using high K+ depolarizing stimuli.

2.
Mol Autism ; 13(1): 34, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850732

RESUMEN

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Asunto(s)
Trastorno Autístico , Animales , Trastorno Autístico/metabolismo , Miedo/fisiología , Congelación , Humanos , Neuronas/fisiología , Sustancia Gris Periacueductal/metabolismo , Ratas
3.
J Neurochem ; 118(3): 365-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21623792

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca(2+) transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB's activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands.


Asunto(s)
Fármacos Neuroprotectores , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/fisiología , Potenciales de Acción/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Calcineurina/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Medios de Cultivo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Fenómenos Electrofisiológicos , Técnicas de Placa-Clamp , Fosforilación , Ratas , Ratas Sprague-Dawley , Estaurosporina/antagonistas & inhibidores , Estaurosporina/toxicidad , Transfección
4.
Cell Death Dis ; 12(2): 218, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637689

RESUMEN

Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response. Moreover, due to neuronal Nrf2 shut-off and consequent weak antioxidant defences, electrophilic tBHQ actually induces oxidative neurotoxicity, via Nrf2-independent Jun induction. However, we find that epigenetic de-repression of neuronal Nrf2 enables them to respond to Nrf2 activators to drive α-synuclein clearance. Moreover, activation of neuronal Nrf2 expression using gRNA-targeted dCas9-based transcriptional activation complexes is sufficient to trigger Nrf2-dependent α-synuclein clearance. Thus, targeting reversal of the developmental shut-off of Nrf2 in forebrain neurons may alter neurodegenerative disease trajectory by boosting proteostasis.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Hidroquinonas/farmacología , Enfermedad por Cuerpos de Lewy/terapia , Factor 2 Relacionado con NF-E2/agonistas , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Prosencéfalo/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Cocultivo , Represión Epigenética , Femenino , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Proteostasis/efectos de los fármacos , alfa-Sinucleína/genética
5.
Cell Rep ; 34(12): 108882, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761343

RESUMEN

Microglia, brain-resident macrophages, require instruction from the CNS microenvironment to maintain their identity and morphology and regulate inflammatory responses, although what mediates this is unclear. Here, we show that neurons and astrocytes cooperate to promote microglial ramification, induce expression of microglial signature genes ordinarily lost in vitro and in age and disease in vivo, and repress infection- and injury-associated gene sets. The influence of neurons and astrocytes separately on microglia is weak, indicative of synergies between these cell types, which exert their effects via a mechanism involving transforming growth factor ß2 (TGF-ß2) signaling. Neurons and astrocytes also combine to provide immunomodulatory cues, repressing primed microglial responses to weak inflammatory stimuli (without affecting maximal responses) and consequently limiting the feedback effects of inflammation on the neurons and astrocytes themselves. These findings explain why microglia isolated ex vivo undergo de-differentiation and inflammatory deregulation and point to how disease- and age-associated changes may be counteracted.


Asunto(s)
Astrocitos/patología , Inflamación/patología , Microglía/patología , Neuronas/patología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , Humanos , Inflamación/genética , Interferones/genética , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Familia de Multigenes , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fagocitosis/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Transcriptoma/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
Redox Biol ; 47: 102158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34626892

RESUMEN

The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy.


Asunto(s)
Astrocitos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antioxidantes , Astrocitos/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo
7.
Cell Rep ; 32(6): 107988, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783927

RESUMEN

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Células Piramidales/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Ratones
9.
Nat Protoc ; 13(10): 2176-2199, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250293

RESUMEN

Transcriptomic changes induced in one cell type by another mediate many biological processes in the brain and elsewhere; however, achieving artifact-free physical separation of cell types to study them is challenging and generally allows for analysis of only a single cell type. We describe an approach using a co-culture of distinct cell types from different species that enables physical cell sorting to be replaced by in silico RNA sequencing (RNA-seq) read sorting, which is possible because of evolutionary divergence of messenger RNA (mRNA) sequences. As an exemplary experiment, we describe the co-culture of purified neurons, astrocytes, and microglia from different species (12-14 d). We describe how to use our Python tool, Sargasso, to separate the reads from conventional RNA-seq according to species and to eliminate any artifacts borne of imperfect genome annotation (10 h). We show how this procedure, which requires no special skills beyond those that might normally be expected of wet lab and bioinformatics researchers, enables the simultaneous transcriptomic profiling of different cell types, revealing the distinct influence of microglia on astrocytic and neuronal transcriptomes under inflammatory conditions.


Asunto(s)
Técnicas de Cocultivo/métodos , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Activación Transcripcional , Transcriptoma , Animales , Astrocitos/citología , Astrocitos/metabolismo , Secuencia de Bases , Células Cultivadas , Simulación por Computador , Humanos , Ratones , Microglía/citología , Microglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas , Especificidad de la Especie , Transcripción Genética
10.
Cell Rep ; 25(4): 841-851.e4, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355491

RESUMEN

The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse. However, these models remain untested in the context of endogenous NMDARs. We show that, although mutating the endogenous GluN2B CaMKII site has secondary effects on GluN2B CTD phosphorylation, the developmental changes in NMDAR composition occur normally and measures of plasticity and synaptogenesis are unaffected. Moreover, the switch proceeds normally in mice that have the GluN2A CTD replaced by that of GluN2B and commences without an observable decline in GluN2B levels but is impaired by GluN2A haploinsufficiency. Thus, GluN2A expression levels, and not GluN2 subtype-specific CTD-driven events, are the overriding factor in the developmental switch in NMDAR composition.


Asunto(s)
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Mutación/genética , Neurogénesis , Fosforilación , Subunidades de Proteína/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo , Ritmo Teta/fisiología
12.
Free Radic Biol Med ; 100: 147-152, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27365123

RESUMEN

The human brain generally remains structurally and functionally sound for many decades, despite the post-mitotic and non-regenerative nature of neurons. This is testament to the brain's profound capacity for homeostasis: both neurons and glia have in-built mechanisms that enable them to mount adaptive or protective responses to potentially challenging situations, ensuring that cellular viability and functionality is maintained. The high and variable metabolic and mitochondrial activity of neurons places several demands on the brain, including the task of neutralizing the associated reactive oxygen species (ROS) produced, to limit the accumulation of oxidative damage. Astrocytes play a key role in providing antioxidant support to nearby neurons, and redox regulation of the astrocytic Nrf2 pathway represents a powerful homeostatic regulator of the large cohort of Nrf2-regulated antioxidant genes that they express. In contrast, the Nrf2 pathway is weak in neurons, robbing them of this particular homeostatic device. However, many neuronal antioxidant genes are controlled by synaptic activity, enabling activity-dependent increases in ROS production to be offset by enhanced antioxidant capacity of both glutathione and thioredoxin-peroxiredoxin systems. These distinct homeostatic mechanisms in neurons and astrocytes together combine to promote neuronal resistance to oxidative insults. Future investigations into signaling between distinct cell types within the neuro-glial unit are likely to uncover further mechanisms underlying redox homeostasis in the brain.


Asunto(s)
Antioxidantes/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
13.
Nat Commun ; 6: 6761, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25854456

RESUMEN

How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked.


Asunto(s)
Sinapsis Eléctricas/metabolismo , Lóbulo Frontal/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Maleato de Dizocilpina/farmacología , Sinapsis Eléctricas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Lóbulo Frontal/efectos de los fármacos , Regulación de la Expresión Génica , Glutatión/efectos de los fármacos , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Transferasa/efectos de los fármacos , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA