Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant Physiol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588030

RESUMEN

FW2.2 (standing for FRUIT WEIGHT 2.2), the founding member of the CELL NUMBER REGULATOR (CNR) gene family, was the first cloned gene underlying a quantitative trait locus (QTL) governing fruit size and weight in tomato (Solanum lycopersicum). However, despite this discovery over 20 years ago, the molecular mechanisms by which FW2.2 negatively regulates cell division during fruit growth remain undeciphered. In the present study, we confirmed that FW2.2 is a membrane-anchored protein whose N- and C-terminal ends face the apoplast. We unexpectedly found that FW2.2 is located at plasmodesmata (PD). FW2.2 participates in the spatiotemporal regulation of callose deposition at PD and belongs to a protein complex which encompasses callose synthases. These results suggest that FW2.2 has a regulatory role in cell-to-cell communication by modulating PD transport capacity and trafficking of signaling molecules during fruit development.

2.
Plant Cell ; 34(1): 10-52, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633455

RESUMEN

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Plantas/metabolismo , Orgánulos/metabolismo , Células Vegetales/metabolismo
3.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37365405

RESUMEN

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Asunto(s)
Proteínas de Arabidopsis , Brasinoesteroides , Plasmodesmos/metabolismo , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo
4.
Plant Physiol ; 188(1): 44-55, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34687300

RESUMEN

Despite recent progress in our understanding of graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy (CLEM) approach to study the graft interface with high ultrastructural resolution. Grafting hypocotyls of Arabidopsis thaliana lines expressing yellow FP or monomeric red FP in the endoplasmic reticulum (ER) allowed efficient targeting of the grafting interface for examination under light and electron microscopy. To explore the potential of our method to study sub-cellular events at the graft interface, we focused on the formation of secondary plasmodesmata (PD) between the grafted partners. We showed that four classes of PD were formed at the interface and that PD introgression into the cell wall was initiated equally by both partners. Moreover, the success of PD formation appeared not systematic with a third of PD not spanning the cell wall entirely. Characterizing the ultrastructural characteristics of these incomplete PD gives us insights into the process of secondary PD biogenesis. We found that the establishment of successful symplastic connections between the scion and rootstock occurred predominantly in the presence of thin cell walls and ER-plasma membrane tethering. The resolution reached in this work shows that our CLEM method advances the study of biological processes requiring the combination of light and electron microscopy.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Hipocótilo/crecimiento & desarrollo , Hipocótilo/ultraestructura , Microscopía Electrónica/métodos , Microscopía/métodos , Trasplante de Órganos , Plasmodesmos/ultraestructura
5.
Plant Physiol ; 185(3): 650-662, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793898

RESUMEN

A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information. Biological membranes are highly dynamic and deformable and can be shaped into curved, tubular, or flat conformations, resulting in differentiated biophysical properties. At membrane contact sites, membranes from adjacent organelles come together into a unique 3D configuration, forming functionally distinct microdomains, which facilitate spatially regulated functions, such as organelle communication. Here, we describe the diversity of geometries of contact site-forming membranes in different eukaryotic organisms and explore the emerging notion that their shape, 3D architecture, and remodeling jointly define their cellular activity. The review also provides selected examples highlighting changes in membrane contact site architecture acting as rapid and local responses to cellular perturbations, and summarizes our current understanding of how those structural changes confer functional specificity to those cellular territories.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo , Transducción de Señal/fisiología , Fenómenos Fisiológicos de las Plantas
6.
Cell Mol Life Sci ; 78(3): 799-816, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32920696

RESUMEN

Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.


Asunto(s)
Transporte Biológico/fisiología , Plantas/metabolismo , Plasmodesmos/metabolismo , Comunicación Celular , Pared Celular/química , Pared Celular/metabolismo , Estructuras Citoplasmáticas/química , Retículo Endoplásmico/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plasmodesmos/química , Polisacáridos/química , Polisacáridos/metabolismo
7.
EMBO Rep ; 20(8): e47182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286648

RESUMEN

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Proteínas de la Membrana/genética , Plasmodesmos/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glicosiltransferasas/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Fosfolípidos/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Plasmodesmos/ultraestructura , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Proteína Fluorescente Roja
8.
PLoS Pathog ; 14(11): e1007378, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419072

RESUMEN

Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3's phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/inmunología , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Potexvirus/patogenicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de la Cápside/fisiología , Membrana Celular/metabolismo , Movimiento Celular , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Plantas Modificadas Genéticamente/virología , Plasmodesmos/metabolismo , Proteínas Quinasas/metabolismo
9.
Plant Physiol ; 181(1): 142-160, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300470

RESUMEN

Plasmodesmata act as key elements in intercellular communication, coordinating processes related to plant growth, development, and responses to environmental stresses. While many of the developmental, biotic, and abiotic signals are primarily perceived at the plasma membrane (PM) by receptor proteins, plasmodesmata also cluster receptor-like activities; whether these two pathways interact is currently unknown. Here, we show that specific PM-located Leu-rich-repeat receptor-like-kinases, Qian Shou kinase (QSK1) and inflorescence meristem kinase2, which under optimal growth conditions are absent from plasmodesmata, rapidly relocate and cluster to the pores in response to osmotic stress. This process is remarkably fast, is not a general feature of PM-associated proteins, and is independent of sterol and sphingolipid membrane composition. Focusing on QSK1, previously reported to be involved in stress responses, we show that relocalization in response to mannitol depends on QSK1 phosphorylation. Loss-of-function mutation in QSK1 results in delayed lateral root (LR) development, and the mutant is affected in the root response to mannitol stress. Callose-mediated plasmodesmata regulation is known to regulate LR development. We found that callose levels are reduced in the qsk1 mutant background with a root phenotype resembling ectopic expression of PdBG1, an enzyme that degrades callose at the pores. Both the LR and callose phenotypes can be complemented by expression of wild-type and phosphomimic QSK1 variants, but not by phosphodead QSK1 mutant, which fails to relocalize at plasmodesmata. Together, the data indicate that reorganization of receptor-like-kinases to plasmodesmata is important for the regulation of callose and LR development as part of the plant response to osmotic stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucanos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Comunicación Celular , Membrana Celular/enzimología , Mutación , Presión Osmótica , Proteínas de Unión a Fosfato/genética , Plasmodesmos/enzimología , Proteínas Quinasas/genética , Transporte de Proteínas , Estrés Fisiológico
10.
Plant Cell ; 27(4): 1228-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25818623

RESUMEN

Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the ß-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lípidos de la Membrana/metabolismo , Plasmodesmos/metabolismo , Microdominios de Membrana/metabolismo
11.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518342

RESUMEN

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Nicotiana/química , Esfingolípidos/química , Técnicas de Cultivo de Célula/métodos , Membrana Celular/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Glicoesfingolípidos/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Microscopía Confocal , Modelos Moleculares , Fitosteroles/química , Fitosteroles/metabolismo , Hojas de la Planta/química , Esfingolípidos/metabolismo , Nicotiana/citología , Nicotiana/metabolismo
12.
J Exp Bot ; 69(1): 91-103, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-28992136

RESUMEN

Plasmodesmata (PD) are a hallmark of the plant kingdom and a cornerstone of plant biology and physiology, forming the conduits for the cell-to-cell transfer of proteins, RNA and various metabolites, including hormones. They connect the cytosols and endomembranes of cells, which allows enhanced cell-to-cell communication and synchronization. Because of their unique position as intercellular gateways, they are at the frontline of plant defence and signalling and constitute the battleground for virus replication and spreading. The membranous organization of PD is remarkable, where a tightly furled strand of endoplasmic reticulum comes into close apposition with the plasma membrane, the two connected by spoke-like elements. The role of these structural features is, to date, still not completely understood. Recent data on PD seem to point in an unexpected direction, establishing a close parallel between PD and membrane contact sites and defining plasmodesmal membranes as microdomains. However, the implications of this new viewpoint are not fully understood. Aided by available phylogenetic data, this review attempts to reassess the function of the different elements comprising the PD and the relevance of membrane lipid composition and biophysics in defining specialized microdomains of PD, critical for their function.


Asunto(s)
Lípidos de la Membrana/metabolismo , Plantas/metabolismo , Plasmodesmos/metabolismo , Transducción de Señal , Transporte Biológico , Fenómenos Biofísicos , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo
13.
Genes Dev ; 23(3): 373-84, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19204121

RESUMEN

The plant hormone auxin mediates developmental patterning by a mechanism that is based on active transport. In the shoot apical meristem, auxin gradients are thought to be set up through a feedback loop between auxin and the activity and polar localization of its transporter, the PIN1 protein. Two distinct molecular mechanisms for the subcellular polarization of PIN1 have been proposed. For leaf positioning (phyllotaxis), an "up-the-gradient" PIN1 polarization mechanism has been proposed, whereas the formation of vascular strands is thought to proceed by "with-the-flux" PIN1 polarization. These patterning mechanisms intersect during the initiation of the midvein, which raises the question of how two different PIN1 polarization mechanisms may work together. Our detailed analysis of PIN1 polarization during midvein initiation suggests that both mechanisms for PIN1 polarization operate simultaneously. Computer simulations of the resulting dual polarization model are able to reproduce the dynamics of observed PIN1 localization. In addition, the appearance of high auxin concentration in our simulations throughout the initiation of the midvein is consistent with experimental observation and offers an explanation for a long-standing criticism of the canalization hypothesis; namely, how both high flux and high concentration can occur simultaneously in emerging veins.


Asunto(s)
Modelos Biológicos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Secuencia de Bases , Transporte Biológico Activo , Tipificación del Cuerpo/efectos de los fármacos , Simulación por Computador , Cartilla de ADN/genética , ADN de Plantas/genética , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente
14.
Annu Rev Plant Biol ; 75(1): 291-317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424063

RESUMEN

Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.


Asunto(s)
Comunicación Celular , Plasmodesmos , Plasmodesmos/metabolismo , Plasmodesmos/fisiología , Desarrollo de la Planta/fisiología , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas
15.
Bio Protoc ; 14(13): e5029, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007160

RESUMEN

CRISPR-Cas9 technology has become an essential tool for plant genome editing. Recent advancements have significantly improved the ability to target multiple genes simultaneously within the same genetic background through various strategies. Additionally, there has been significant progress in developing methods for inducible or tissue-specific editing. These advancements offer numerous possibilities for tailored genome modifications. Building upon existing research, we have developed an optimized and modular strategy allowing the targeting of several genes simultaneously in combination with the synchronized expression of the Cas9 endonuclease in the egg cell. This system allows significant editing efficiency while avoiding mosaicism. In addition, the versatile system we propose allows adaptation to inducible and/or tissue-specific edition according to the promoter chosen to drive the expression of the Cas9 gene. Here, we describe a step-by-step protocol for generating the binary vector necessary for establishing Arabidopsis edited lines using a versatile cloning strategy that combines Gateway® and Golden Gate technologies. We describe a versatile system that allows the cloning of as many guides as needed to target DNA, which can be multiplexed into a polycistronic gene and combined in the same construct with sequences for the expression of the Cas9 endonuclease. The expression of Cas9 is controlled by selecting from among a collection of promoters, including constitutive, inducible, ubiquitous, or tissue-specific promoters. Only one vector containing the polycistronic gene (tRNA-sgRNA) needs to be constructed. For that, sgRNA (composed of protospacers chosen to target the gene of interest and sgRNA scaffold) is cloned in tandem with the pre-tRNA sequence. Then, a single recombination reaction is required to assemble the promoter, the zCas9 coding sequence, and the tRNA-gRNA polycistronic gene. Each element is cloned in an entry vector and finally assembled according to the Multisite Gateway® Technology. Here, we detail the process to express zCas9 under the control of egg cell promoter fused to enhancer sequence (EC1.2en-EC1.1p) and to simultaneously target two multiple C2 domains and transmembrane region protein genes (MCTP3 and MCTP4, respectively at3g57880 and at1g51570), using one or two sgRNA per gene. Key features • A simple method for Arabidopsis edited lines establishment using CRISPR-Cas9 technology • Versatile cloning strategy combining various technologies for convenient cloning (Gateway®, Golden Gate) • Multigene targeting with high efficiency.

16.
Nat Plants ; 10(8): 1172-1183, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39134664

RESUMEN

Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.


Asunto(s)
Membrana Celular , Microdominios de Membrana , Plantas , Terminología como Asunto , Microdominios de Membrana/metabolismo , Membrana Celular/metabolismo
17.
Plant Physiol ; 159(4): 1501-10, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723086

RESUMEN

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is a key feature of plant architecture. Current models propose that the spatiotemporal regulation of organ initiation is controlled by a positive feedback loop between the plant hormone auxin and its efflux carrier PIN-FORMED1 (PIN1). Consequently, pin1 mutants give rise to naked inflorescence stalks with few or no flowers, indicating that PIN1 plays a crucial role in organ initiation. However, pin1 mutants do produce leaves. In order to understand the regulatory mechanisms controlling leaf initiation in Arabidopsis (Arabidopsis thaliana) rosettes, we have characterized the vegetative pin1 phenotype in detail. We show that although the timing of leaf initiation in vegetative pin1 mutants is variable and divergence angles clearly deviate from the canonical 137° value, leaves are not positioned at random during early developmental stages. Our data further indicate that other PIN proteins are unlikely to explain the persistence of leaf initiation and positioning during pin1 vegetative development. Thus, phyllotaxis appears to be more complex than suggested by current mechanistic models.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Meristema/metabolismo , Meristema/ultraestructura , Mutación/genética , Hojas de la Planta/anatomía & histología , Proteínas Recombinantes de Fusión/metabolismo
18.
Trends Plant Sci ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036390

RESUMEN

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

19.
Development ; 136(17): 2997-3006, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19666826

RESUMEN

One of the most striking aspects of plant diversity is variation in leaf shape. Much of this diversity is achieved by the modulation of leaf blade dissection to form lobes or leaflets. Here, we show that the phytohormone auxin is a crucial signal regulating the partitioned outgrowth necessary to develop a dissected leaf. In developing leaves, the asymmetric distribution of auxin, driven by active transport, delineates the initiation of lobes and leaflets and specifies differential laminar outgrowth. Furthermore, homologous members of the AUX/indole-3-acetic acid (IAA) gene family mediate the action of auxin in determining leaf shape by repressing outgrowth in areas of low auxin concentration during both simple and compound leaf development. These results provide molecular evidence that leaflets initiate in a process reminiscent of organogenesis at the shoot apical meristem, but that compound and simple leaves regulate marginal growth through an evolutionarily conserved mechanism, thus shedding light on the homology of compound and simple leaves.


Asunto(s)
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Morfogénesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta , Solanum lycopersicum , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Meristema/anatomía & histología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Transgenes
20.
C R Biol ; 345(2): 7-14, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847461

RESUMEN

Cell division is fundamental for living organisms, sustaining their growth and development. During cell division a single mother cell will duplicate its genome and organelles, and give rise to two independent entities that will eventually split apart in a tightly regulated process called abscission or the final-cut. In multicellular organisms, newly born daughter cells split apart while they simultaneously need to maintain contact for intercellular communication. In this mini-review, I discuss this fascinating paradox of how cells across kingdoms combine the need to divide with the need to connect.


La division cellulaire est fondamentale pour les organismes vivants, soutenant leur croissance et leur développement. Au cours de la division cellulaire, une seule cellule mère va dupliquer son génome et ses organites, et donner naissance à deux entités indépendantes qui vont finalement se séparer dans un processus étroitement régulé appelé abscission ou la coupe finale. Chez les organismes multicellulaires, les cellules filles nouvellement nées se séparent alors qu'elles doivent simultanément maintenir le contact pour établir une communication intercellulaire. Dans cette mini-revue, je discute de ce paradoxe fascinant qui montre comment les cellules de tous les règnes combinent le besoin de se diviser avec le besoin de se connecter.


Asunto(s)
Divorcio , Consentimiento Informado , División Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA