Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microb Cell Fact ; 17(1): 113, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012131

RESUMEN

BACKGROUND: Malate is a C4-dicarboxylic acid widely used as an acidulant in the food and beverage industry. Rational engineering has been performed in the past for the development of microbial strains capable of efficient production of this metabolite. However, as malate can be a precursor for specialty chemicals, such as 2,4-dihydroxybutyric acid, that require additional cofactors NADP(H) and ATP, we set out to reengineer Escherichia coli for Krebs cycle-dependent production of malic acid that can satisfy these requirements. RESULTS: We found that significant malate production required at least simultaneous deletion of all malic enzymes and dehydrogenases, and concomitant expression of a malate-insensitive PEP carboxylase. Metabolic flux analysis using 13C-labeled glucose indicated that malate-producing strains had a very high flux over the glyoxylate shunt with almost no flux passing through the isocitrate dehydrogenase reaction. The highest malate yield of 0.82 mol/mol was obtained with E. coli Δmdh Δmqo ΔmaeAB ΔiclR ΔarcA which expressed malate-insensitive PEP carboxylase PpcK620S and NADH-insensitive citrate synthase GltAR164L. We also showed that inactivation of the dicarboxylic acid transporter DcuA strongly reduced malate production arguing for a pivotal role of this permease in malate export. CONCLUSIONS: Since more NAD(P)H and ATP cofactors are generated in the Krebs cycle-dependent malate production when compared to pathways which depend on the function of anaplerotic PEP carboxylase or PEP carboxykinase enzymes, the engineered strain developed in this study can serve as a platform to increase biosynthesis of malate-derived metabolites such as 2,4-dihydroxybutyric acid.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Escherichia coli/metabolismo , Malatos/metabolismo , Ingeniería Metabólica/métodos , Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico/genética , Escherichia coli/genética , NAD/metabolismo , NADP/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo
2.
Gut ; 61(4): 543-53, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22110050

RESUMEN

OBJECTIVE: The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. METHODS: The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). RESULTS: Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. CONCLUSIONS: The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.


Asunto(s)
Adaptación Fisiológica/fisiología , Dieta Alta en Grasa , Intestinos/microbiología , Metagenoma/fisiología , Animales , Ciego/microbiología , Citocinas/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Ácidos Grasos no Esterificados/sangre , Prueba de Tolerancia a la Glucosa , Absorción Intestinal/fisiología , Lipopolisacáridos/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Permeabilidad , Fenotipo
3.
PLoS One ; 13(2): e0193036, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29462203

RESUMEN

An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Malatos/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Sustitución de Aminoácidos , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Dominio Catalítico/genética , Evolución Molecular Dirigida , Biblioteca de Genes , Variación Genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfotransferasas/aislamiento & purificación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Electricidad Estática , Especificidad por Sustrato
4.
Nat Commun ; 8: 15828, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28631755

RESUMEN

2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.


Asunto(s)
Butileno Glicoles/metabolismo , Butiratos/metabolismo , Redes y Vías Metabólicas , Metionina/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Escherichia coli/metabolismo , Glucosa/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Ingeniería Metabólica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Biología Sintética , Termodinámica
5.
FEBS Lett ; 586(23): 4114-8, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23103740

RESUMEN

The phosphoglucomutases (PGM) Pgm1, Pgm2, and Pgm3 of the yeast Saccharomyces cerevisiae were tested for their ability to interconvert ribose-1-phosphate and ribose-5-phosphate. The purified proteins were studied in vitro with regard to their kinetic properties on glucose-1-phosphate and ribose-1-phosphate. All tested enzymes were active on both substrates with Pgm1 exhibiting only residual activity on ribose-1-phosphate. The Pgm2 and Pgm3 proteins had almost equal kinetic properties on ribose-1-phosphate, but Pgm2 had a 2000 times higher preference for glucose-1-phosphate when compared to Pgm3. The in vivo function of the PGMs was characterized by monitoring ribose-1-phosphate kinetics following a perturbation of the purine nucleotide balance. Only mutants with a deletion of PGM3 hyper-accumulated ribose-1-phosphate. We conclude that Pgm3 functions as the major phosphoribomutase in vivo.


Asunto(s)
Fosfoglucomutasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucofosfatos/metabolismo , Fosfoglucomutasa/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA