Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Intervalo de año de publicación
1.
Crit Rev Immunol ; 44(3): 37-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421704

RESUMEN

Regulatory T (Treg) cells hold promise for the ultimate cure of immune-mediated diseases. However, how to effectively restore Treg function in patients remains unknown. Previous reports suggest that activated dendritic cells (DCs) de novo synthesize locally high concentrations of 1,25-dihydroxy vitamin D, i.e., the active vitamin D or 1,25(OH)2D by upregulating the expression of 25-hydroxy vitamin D 1α-hydroxylase. Although 1,25(OH)2D has been shown to induce Treg cells, DC-derived 1,25(OH)2D only serves as a checkpoint to ensure well-balanced immune responses. Our animal studies have shown that 1,25(OH)2D requires high concentrations to generate Treg cells, which can cause severe side effects. In addition, our animal studies have also demonstrated that dendritic cells (DCs) overexpressing the 1α-hydroxylase de novo synthesize the effective Treg-inducing 1,25(OH)2D concentrations without causing the primary side effect of hypercalcemia (i.e., high blood calcium levels). This study furthers our previous animal studies and explores the efficacy of the la-hydroxylase-overexpressing DCs in inducing human CD4+FOXP3+regulatory T (Treg) cells. We discovered that the effective Treg-inducing doses of 1,25(OH)2D were within a range. Additionally, our data corroborated that the 1α-hydroxylase-overexpressing DCs synthesized 1,25(OH)2D within this concentration range in vivo, thus facilitating effective Treg cell induction. Moreover, this study demonstrated that 1α-hydroxylase expression levels were pivotal for DCs to induce Treg cells because physiological 25(OH)D levels were sufficient for the engineered but not parental DCs to enhance Treg cell induction. Interestingly, adding non-toxic zinc concentrations significantly augmented the Treg-inducing capacity of the engineered DCs. Our new findings offer a novel therapeutic avenue for immune-mediated human diseases, such as inflammatory bowel disease, type 1 diabetes, and multiple sclerosis, by integrating zinc with the 1α-hydroxylase-overexpressing DCs.


Asunto(s)
Linfocitos T Reguladores , Zinc , Animales , Humanos , Vitamina D , Oxigenasas de Función Mixta , Células Dendríticas , Suplementos Dietéticos
2.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126100

RESUMEN

Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.


Asunto(s)
Genoma Mitocondrial , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Regulación Leucémica de la Expresión Génica
3.
FASEB J ; 36(8): e22444, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839071

RESUMEN

Acute liver injury is a common disease without effective therapy in humans. We sought to evaluate a combination therapy of insulin-like growth factor 1 (IGF-I) and BTP-2 in a mouse liver injury model induced by lipopolysaccharide (LPS). We chose this model because LPS is known to increase the expression of the transcription factors related to systemic inflammation (i.e., NFκB, CREB, AP1, IRF 3, and NFAT), which depends on calcium signaling. Notably, these transcription factors all have pleiotropic effects and account for the other observed changes in tissue damage parameters. Additionally, LPS is also known to increase the genes associated with a tissue injury (e.g., NGAL, SOD, caspase 3, and type 1 collagen) and systemic expression of pro-inflammatory cytokines. Finally, LPS compromises vascular integrity. Accordingly, IGF-I was selected because its serum levels were shown to decrease during systemic inflammation. BTP-2 was chosen because it was known to decrease cytosolic calcium, which is increased by LPS. This current study showed that IGF-I, BTP-2, or a combination therapy significantly altered and normalized all of the aforementioned LPS-induced gene changes. Additionally, our therapies reduced the vascular leakage caused by LPS, as evidenced by the Evans blue dye technique. Furthermore, histopathologic studies showed that IGF-I decreased the proportion of hepatocytes with ballooning degeneration. Finally, IGF-I also increased the expression of the hepatic growth factor (HGF) and the receptor for the epidermal growth factor (EGFR), markers of liver regeneration. Collectively, our data suggest that a combination of IGF-I and BTP-2 is a promising therapy for acute liver injury.


Asunto(s)
Anilidas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Factor I del Crecimiento Similar a la Insulina , Tiadiazoles , Anilidas/metabolismo , Anilidas/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Ratones , Tiadiazoles/metabolismo , Tiadiazoles/farmacología
4.
Am J Physiol Cell Physiol ; 322(5): C977-C990, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385325

RESUMEN

A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. Here, we hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation. Osteoclastic resorption increases interstitial fluid calcium locally from the normal 1.8 mM up to 5 mM. MC3T3-E1 osteoprogenitor cells, cultured in a 3.6 mM calcium medium, demonstrated that calcium signaling stimulated osteogenic cell proliferation, differentiation, and migration. Calcium channel knockdown studies implicated calcium channels, Cav1.2, store-operated calcium entry (SOCE), and calcium-sensing receptor (CaSR) in regulating bone cell anabolic activities. MC3T3-E1 cells cultured in a 3.6 mM calcium medium expressed increased gene expression of Wnt signaling and growth factors platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and bone morphogenic protein-2 (BMP 2). Our coupling model of bone formation, the receptor activator of nuclear factor-κΒ ligand (RANKL)-treated mouse calvaria, confirmed the role of calcium signaling in coupled bone formation by exhibiting increased gene expression for osterix and osteocalcin. Critically, dual immunocytochemistry showed that RANKL treatment increased osterix-positive cells and increased fluorescence intensity of Cav1.2 and CaSR protein expression per osterix-positive cell. The above data established that calcium released by osteoclasts contributed to the regulation of coupled bone formation. CRISPR/Cas-9 knockout of Cav1.2 in osteoprogenitor cells cultured in basal calcium medium caused a >80% decrease in the expression of downstream osteogenic genes, emphasizing the large magnitude of the effect of calcium signaling. Thus, calcium signaling is a major regulator of coupled bone formation.


Asunto(s)
Resorción Ósea , Osteogénesis , Animales , Resorción Ósea/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Diferenciación Celular , Ratones , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
J Bone Miner Metab ; 40(6): 900-913, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35947191

RESUMEN

INTRODUCTION: This study was undertaken to gain mechanistic information about bone repair using the bone repletion model in aged Balb/cBy mice. MATERIALS AND METHODS: one month-old (young) mice were fed a calcium-deficient diet for 2 weeks and 8 month-old (adult) and 21-25 month-old (aged) female mice for 4 weeks during depletion, which was followed by feeding a calcium-sufficient diet for 16 days during repletion. To determine if prolonged repletion would improve bone repair, an additional group of aged mice were repleted for 4 additional weeks. Control mice were fed calcium-sufficient diet throughout. In vivo bone repletion response was assessed by bone mineral density gain and histomorphometry. In vitro response was monitored by osteoblastic proliferation, differentiation, and senescence. RESULTS:  There was no significant bone repletion in aged mice even with an extended repletion period, indicating an impaired bone repletion. This was not due to an increase in bone cell senescence or reduction in osteoblast proliferation, but to dysfunctional osteoblastic differentiation in aged bone cells. Osteoblasts of aged mice had elevated levels of cytosolic and ER calcium, which were associated with increased Cav1.2 and CaSR (extracellular calcium channels) expression but reduced expression of Orai1 and Stim1, key components of Stored Operated Ca2+ Entry (SOCE). Activation of Cav1.2 and CaSR leads to increased osteoblastic proliferation, but activation of SOCE is associated with osteoblastic differentiation. CONCLUSION: The bone repletion mechanism in aged Balb/cBy mice is defective that is caused by an impaired osteoblast differentiation through reducedactivation of SOCE.


Asunto(s)
Regeneración Ósea , Osteoblastos , Animales , Femenino , Ratones , Huesos/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Calcio de la Dieta/metabolismo , Osteoblastos/citología , Diferenciación Celular
6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232688

RESUMEN

Acute myeloid leukemia (AML)-the most frequent form of adult blood cancer-is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities. Beyond its catalytic activity, FBP1 inhibits aerobic glycolysis-known as the "Warburg effect"-in cancer cells. Importantly, while downregulation of FBP1 is associated with carcinogenesis in major human organs, restoration of FBP1 in cancer cells promotes apoptosis and prevents disease progression in solid tumors. Recently, our large-scale sequencing analyses revealed FBP1 as a novel inducible therapeutic target among 17,757 vitamin-D-responsive genes in MV4-11 or MOLM-14 blasts in vitro, both of which were derived from AML patients with FLT3 mutations. To investigate FBP1's anti-leukemic function in this study, we generated a new AML cell line through lentiviral overexpression of an FBP1 transgene in vitro (named FBP1-MV4-11). Results showed that FBP1-MV4-11 blasts are more prone to apoptosis than MV4-11 blasts. Mechanistically, FBP1-MV4-11 blasts have significantly increased gene and protein expression of P53, as confirmed by the P53 promoter assay in vitro. However, enhanced cell death and reduced proliferation of FBP1-MV4-11 blasts could be reversed by supplementation with post-glycolytic metabolites in vitro. Additionally, FBP1-MV4-11 blasts were found to have impaired mitochondrial homeostasis through reduced cytochrome c oxidase subunit 2 (COX2 or MT-CO2) and upregulated PTEN-induced kinase (PINK1) expressions. In summary, this is the first in vitro evidence that FBP1-altered carbohydrate metabolism and FBP1-activated P53 can initiate leukemic death by activating mitochondrial reprogramming in AML blasts, supporting the clinical potential of FBP1-based therapies for AML-like cancers.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Células Precursoras de Granulocitos , Leucemia Mieloide Aguda , Mitocondrias , Proteína p53 Supresora de Tumor , Apoptosis , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Dióxido de Carbono/metabolismo , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Progresión de la Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Fructosa/farmacología , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Glucólisis , Células Precursoras de Granulocitos/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vitamina D/farmacología , Vitaminas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
7.
J Immunol ; 202(12): 3447-3457, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31053627

RESUMEN

Current therapies for gut inflammation have not reached the desired specificity and are attended by unintended immune suppression. This study aimed to provide evidence for supporting a hypothesis that direct in vivo augmentation of the induction of gut-homing regulatory T (Treg) cells is a strategy of expected specificity for the treatment of chronic intestinal inflammation (e.g., inflammatory bowel disease). We showed that dendritic cells (DCs), engineered to de novo produce high concentrations of both 1,25-dihydroxyvitamin D, the active vitamin D metabolite, and retinoic acid, an active vitamin A metabolite, augmented the induction of T cells that express both the regulatory molecule Foxp3 and the gut-homing receptor CCR9 in vitro and in vivo. In vivo, the newly generated Ag-specific Foxp3+ T cells homed to intestines. Additionally, transfer of such engineered DCs robustly suppressed ongoing experimental colitis. Moreover, CD4+ T cells from spleens of the mice transferred with the engineered DCs suppressed experimental colitis in syngeneic hosts. The data suggest that the engineered DCs enhance regulatory function in CD4+ T cell population in peripheral lymphoid tissues. Finally, we showed that colitis suppression following in vivo transfer of the engineered DCs was significantly reduced when Foxp3+ Treg cells were depleted. The data indicate that maximal colitis suppression mediated by the engineered DCs requires Treg cells. Collectively, our data support that DCs de novo overproducing both 1,25-dihydroxyvitamin D and retinoic acid are a promising novel therapy for chronic intestinal inflammation.


Asunto(s)
Colitis/terapia , Células Dendríticas/fisiología , Enfermedades Inflamatorias del Intestino/terapia , Intestinos/inmunología , Receptores CCR/metabolismo , Receptores Mensajeros de Linfocitos/metabolismo , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Células Cultivadas , Colitis/inmunología , Células Dendríticas/trasplante , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Terapia de Inmunosupresión , Enfermedades Inflamatorias del Intestino/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/trasplante , Tretinoina/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502422

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Available drugs aim to suppress gut inflammation. These drugs have significantly delayed disease progression and improved patients' quality of life. However, the disease continues to progress, underscoring the need to develop novel therapies. Aside from chronic gut inflammation, IBD patients also experience a leaky gut problem due to damage to the intestinal epithelial layer. In this regard, epithelial regeneration and repair are mediated by intestinal stem cells. However, no therapies are available to directly enhance the intestinal stem cells' regenerative and repair function. Recently, it was shown that active vitamin D, i.e., 1,25-dihydroxyvitamin D or 1,25(OH)2D, was necessary to maintain Lgr5+ intestinal stem cells, actively cycling under physiological conditions. In this study, we used two strategies to investigate the role of 1,25(OH)2D in intestinal stem cells' regenerative function. First, to avoid the side effects of systemic high 1,25(OH)2D conditions, we used our recently developed novel strategy to deliver locally high 1,25(OH)2D concentrations specifically to inflamed intestines. Second, because of the Lgr5+ intestinal stem cells' active cycling status, we used a pulse-and-chase strategy via 5-bromo-2'-deoxyuridine (BrdU) labeling to trace the Lgr5+ stem cells through the whole epithelial regeneration process. Our data showed that locally high 1,25(OH)2D concentrations enhanced intestinal stem cell migration. Additionally, the migrated cells differentiated into mature epithelial cells. Our data, therefore, suggest that local delivery of high 1,25(OH)2D concentrations is a promising strategy to augment intestinal epithelial repair in IBD patients.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Células Madre/metabolismo , Vitamina D/análogos & derivados , Animales , Rastreo Celular , Inflamación/metabolismo , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos BALB C , Células Madre/patología , Vitamina D/farmacología
9.
Int J Mol Sci ; 22(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063554

RESUMEN

Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1ß, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Anilidas/farmacología , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Tiadiazoles/farmacología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Anilidas/uso terapéutico , Animales , COVID-19/complicaciones , Calcio/metabolismo , Canales de Calcio/metabolismo , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tiadiazoles/uso terapéutico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Transl Med ; 18(1): 322, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32847594

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has led to a declaration of a Public Health Emergency of International Concern by the World Health Organization. As of May 18, 2020, there have been more than 4.7 million cases and over 316,000 deaths worldwide. COVID-19 is caused by a highly infectious novel coronavirus known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to an acute infectious disease with mild-to-severe clinical symptoms such as flu-like symptoms, fever, headache, dry cough, muscle pain, loss of smell and taste, increased shortness of breath, bilateral viral pneumonia, conjunctivitis, acute respiratory distress syndromes, respiratory failure, cytokine release syndrome (CRS), sepsis, etc. While physicians and scientists have yet to discover a treatment, it is imperative that we urgently address 2 questions: how to prevent infection in immunologically naive individuals and how to treat severe symptoms such as CRS, acute respiratory failure, and the loss of somatosensation. Previous studies from the 1918 influenza pandemic have suggested vitamin D's non-classical role in reducing lethal pneumonia and case fatality rates. Recent clinical trials also reported that vitamin D supplementation can reduce incidence of acute respiratory infection and the severity of respiratory tract diseases in adults and children. According to our literature search, there are no similar findings of clinical trials that have been published as of July 1st, 2020, in relation to the supplementation of vitamin D in the potential prevention and treatment for COVID-19. In this review, we summarize the potential role of vitamin D extra-renal metabolism in the prevention and treatment of the SARS-CoV-2 infection, helping to bring us slightly closer to fulfilling that goal. We will focus on 3 major topics here: 1. Vitamin D might aid in preventing SARS-CoV-2 infection: Vitamin D: Overview of Renal and Extra-renal metabolism and regulation. Vitamin D: Overview of molecular mechanism and multifaceted functions beyond skeletal homeostasis. Vitamin D: Overview of local immunomodulation in human infectious diseases. Anti-viral infection. Anti-malaria and anti-systemic lupus erythematosus (SLE). 2. Vitamin D might act as a strong immunosuppressant inhibiting cytokine release syndrome in COVID-19: Vitamin D: Suppression of key pro-inflammatory pathways including nuclear factor kappa B (NF-kB), interleukin-6 (IL-6), and tumor necrosis factor (TNF). 3. Vitamin D might prevent loss of neural sensation in COVID-19 by stimulating expression of neurotrophins like Nerve Growth Factor (NGF): Vitamin D: Induction of key neurotrophic factors. .


Asunto(s)
Quimioprevención/métodos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Inmunomodulación/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/terapia , Vitamina D/uso terapéutico , Betacoronavirus/efectos de los fármacos , Betacoronavirus/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Suplementos Dietéticos , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/fisiología , Neuroprotección/efectos de los fármacos , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , SARS-CoV-2 , Vitamina D/metabolismo , Vitamina D/farmacología , Deficiencia de Vitamina D/dietoterapia , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/virología
11.
Nucleic Acids Res ; 46(19): 10195-10215, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239926

RESUMEN

Genome editing of human induced pluripotent stem cells (iPSCs) is instrumental for functional genomics, disease modeling, and regenerative medicine. However, low editing efficiency has hampered the applications of CRISPR-Cas9 technology in creating knockin (KI) or knockout (KO) iPSC lines, which is largely due to massive cell death after electroporation with editing plasmids. Here, we report that the transient delivery of BCL-XL increases iPSC survival by ∼10-fold after plasmid transfection, leading to a 20- to 100-fold increase in homology-directed repair (HDR) KI efficiency and a 5-fold increase in non-homologous end joining (NHEJ) KO efficiency. Treatment with a BCL inhibitor ABT-263 further improves HDR efficiency by 70% and KO efficiency by 40%. The increased genome editing efficiency is attributed to higher expressions of Cas9 and sgRNA in surviving cells after electroporation. HDR or NHEJ efficiency reaches 95% with dual editing followed by selection of cells with HDR insertion of a selective gene. Moreover, KO efficiency of 100% can be achieved in a bulk population of cells with biallelic HDR KO followed by double selection, abrogating the necessity for single cell cloning. Taken together, these simple yet highly efficient editing strategies provide useful tools for applications ranging from manipulating human iPSC genomes to creating gene-modified animal models.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína bcl-X/genética , Animales , Células Cultivadas , Genoma Humano/genética , Células HEK293 , Humanos , Células Jurkat , Células K562 , Ratones , Transfección , Regulación hacia Arriba/genética
12.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354174

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and is caused by an aberrant immune response to myelin sheath. Disease-modifying medications, which mainly aim to suppress such aberrant immune response, have significantly improved MS treatment. However, the disease severity continues to worsen. In contrast, progressively more data suggest that 1,25-dihydroxyvitamin D or 1,25(OH)2D, i.e., the active vitamin D, suppresses the differentiation of potentially pathogenic T cells associated with MS, enhances the differentiation of regulatory T cells that suppress the pathogenic T cells, and promotes remyelination. These novel 1,25(OH)2D functions have encouraged investigators to develop vitamin D as a potential therapy for MS. However, because of the hypercalcemia that is associated with high 1,25(OH)2D concentrations, supplementation of native vitamin D has been a major focus in clinical trials for the treatment of MS, but such trials have produced mixed data. In this article, we will review current progress in the supplementation of different vitamin D forms for the treatment of experimental autoimmune encephalomyelitis (i.e., an MS animal model) as well as MS. Furthermore, we will review alternative strategies that our laboratory and others are pursuing in an attempt to circumvent the hurdles that are hampering the effective use of vitamin D as a potential therapy for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Vitamina D/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Esclerosis Múltiple/inmunología , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Resultado del Tratamiento , Vitamina D/farmacología
13.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521790

RESUMEN

This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency. (2) Next, at the 7-day time point, our combination therapy,compared to the untreated group,caused a significant increase in survival, which was noteworthy because all of the untreated animals died in 72 hrs. (3) The four pathways associated with inflammation, including (A) increase in cytosolic calcium, (B) elaboration of proinflammatory cytokines, (C) impairment of vascular integrity, and (D) cell injury, were adversely affected in renal tissue by LPS, using a sublethal dose of LPS. The expression of several genes was measured in each of the above pathways. The combined therapy of IGF-1 and BTP-2 caused a favorable gene expression response in all four pathways. Our current study was an AKI study, but these pathways are also involved in other types of severe inflammation, including sepsis, acute respiratory distress syndrome, and probably severe coronavirus infection.


Asunto(s)
Lesión Renal Aguda/patología , Factor I del Crecimiento Similar a la Insulina/genética , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/terapia , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Citocinas/genética , Citocinas/metabolismo , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Terapia Genética , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/deficiencia , Riñón/metabolismo , Riñón/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/metabolismo , Tasa de Supervivencia
14.
BMC Infect Dis ; 19(1): 1020, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791247

RESUMEN

BACKGROUND: Vitamin D deficiency, determined by blood levels of 25-hydroxyvitamin D [25(OH) D, i.e. the major vitamin D form in blood], has been shown to associate with all-cause mortalities. We recently demonstrated that blood levels of 1,25-dihydroxyvitamin D [1,25(OH)2D, i.e. the active vitamin D] were significantly lower in non-survivors compared to survivors among sepsis patients. Unexpectedly, despite the well documented roles of 1,25(OH)2D in multiple biological functions such as regulation of immune responses, stimulation of antimicrobials, and maintenance of barrier function, 1,25(OH)2D supplementation failed to improve disease outcomes. These previous findings suggest that, in addition to 1,25(OH)2D deficiency, disorders leading to the 1,25(OH)2D deficiency also contribute to mortality among sepsis patients. Therefore, this study investigated the mechanisms leading to sepsis-associated 1,25(OH)2D deficiency. METHODS: We studied mechanisms known to regulate kidney 25-hydroxylvitamin D 1α-hydroxylase which physiologically catalyzes the conversion of 25(OH) D into 1,25(OH)2D. Such mechanisms included parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 23 (FGF-23), and kidney function. RESULTS: We demonstrated in both human subjects and mice that sepsis-associated 1,25(OH)2D deficiency could not be overcome by increased production of PTH which stimulates 1α-hydroxylase. Further studies showed that this failure of PTH to maintain blood 1,25(OH)2D levels was associated with decreased blood levels of IGF-1, increased blood levels of FGF-23, and kidney failure. Since the increase in blood levels of FGF-23 is known to associate with kidney failure, we further investigated the mechanisms leading to sepsis-induced decrease in blood levels of IGF-1. Our data showed that blood levels of growth hormone, which stimulates IGF-1 production in liver, were increased but could not overcome the IGF-1 deficiency. Additionally, we found that the inability of growth hormone to restore the IGF-1 deficiency was associated with suppressed expression and signaling of growth hormone receptor in liver. CONCLUSIONS: Because FGF-23 and IGF-1 have multiple biological functions besides their role in regulating kidney 1α-hydroxylase, our data suggest that FGF-23 and IGF-1 are warranted for further investigation as potential agents for the correction of 1,25(OH)2D deficiency and for the improvement of survival among sepsis patients.


Asunto(s)
Sepsis/sangre , Sepsis/complicaciones , Deficiencia de Vitamina D/etiología , Vitamina D/análogos & derivados , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Humanos , Factor I del Crecimiento Similar a la Insulina , Riñón/efectos de los fármacos , Pruebas de Función Renal , Masculino , Ratones , Ratones Endogámicos C57BL , Hormona Paratiroidea/sangre , Sepsis/fisiopatología , Transducción de Señal , Vitamina D/sangre , Vitamina D/metabolismo , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/fisiopatología
15.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569411

RESUMEN

In central lymphoid tissues, mature lymphocytes are generated and pathogenic autoreactive lymphocytes are deleted. However, it is currently known that a significant number of potentially pathogenic autoreactive lymphocytes escape the deletion and populate peripheral lymphoid tissues. Therefore, peripheral mechanisms are present to prevent these potentially pathogenic autoreactive lymphocytes from harming one's own tissues. One such mechanism is dictated by regulatory T (Treg) cells. So far, the most extensively studied Treg cells are CD4+Foxp3+ Treg cells. However, recent clinical trials for the treatment of immune-mediated diseases using CD4+ Foxp3+ Treg cells met with limited success. Accordingly, it is necessary to explore the potential importance of other Treg cells such as CD8+ Treg cells. In this regard, one extensively studied CD8+ Treg cell subset is Qa-1(HLA-E in human)-restricted CD8+ Treg cells, in which Qa-1(HLA-E) molecules belong to a group of non-classical major histocompatibility complex Ib molecules. This review will first summarize the evidence for the presence of Qa-1-restricted CD8+ Treg cells and their regulatory mechanisms. Major discussions will then focus on the potential clinical translation of Qa-1-restricted CD8+ Treg cells. At the end, we will briefly discuss the current status of human studies on HLA-E-restricted CD8+ Treg cells as well as potential future directions.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Linfocitos T Reguladores/inmunología , Investigación Biomédica Traslacional , Animales , Linfocitos T CD8-positivos/metabolismo , Epítopos/inmunología , Humanos , Enfermedades del Sistema Inmune/etiología , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/terapia , Inmunomodulación , Péptidos/inmunología , Linfocitos T Reguladores/metabolismo , Vacunación
16.
Immunology ; 155(1): 85-98, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29574762

RESUMEN

In the past there have been a multitude of studies that ardently support the role of arginase II (Arg II) in vascular and endothelial disorders; however, the regulation and function of Arg II in autoimmune diseases has thus far remained unclear. Here we report that a global Arg II null mutation in mice suppressed experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. During EAE, both Arg I and Arg II were induced in spinal cords, but only Arg II was induced in spleens and splenic dendritic cells (DCs). DC activation by lipopolysaccharide (LPS), CD40L or TLR8 agonist significantly enhanced Arg II expression without affecting Arg I expression. Conversely, DC differentiating cytokines [IL-4 and granulocyte macrophage-colony-stimulating factor (GM-CSF)] yielded opposite effects. In addition, Arg I and Arg II were regulated differentially during Th1 and Th17 cell polarization. Arg II deficiency in mice delayed EAE onset, ameliorated clinical symptoms and reduced myelin loss, accompanied by a remarkable reduction in the EAE-induced spinal cord expression of Th17 cell markers (IL-17 and RORγt). The abundance of Th17 cells and IL-23+ cells in relevant draining lymph nodes was significantly reduced in Arg II knockout mice. In activated DCs, Arg II deficiency significantly suppressed the expression of Th17-differentiating cytokines IL-23 and IL-6. Interestingly, Arg II deficiency did not lead to any compensatory increase in Arg I expression in vivo and in vitro. In conclusion, Arg II was identified as a factor promoting EAE likely via an Arg I-independent mechanism. Arg II may promote EAE by enhancing DC production of Th17-differentiating cytokines. Specific inhibition of Arg II could be a potential therapy for multiple sclerosis.


Asunto(s)
Arginasa/genética , Encefalomielitis Autoinmune Experimental/genética , Animales , Arginasa/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
FASEB J ; 31(7): 2996-3006, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28363955

RESUMEN

Multiple sclerosis (MS) is caused by immune-mediated damage of myelin sheath. Current therapies aim to block such immune responses. However, this blocking is not sufficiently specific and hence compromises immunity, leading to severe side effects. In addition, blocking medications usually provide transient effects and require frequent administration, which further increases the chance to compromise immunity. In this regard, myelin-specific therapy may provide the desired specificity and a long-lasting therapeutic effect by inducing myelin-specific regulatory T (Treg) cells. Tolerogenic dendritic cells (TolDCs) are one such therapy. However, ex vivo generated TolDCs may be converted into immunogenic DCs in a proinflammatory environment. In this study, we identified a potential novel myelin-specific therapy that works with immunogenic DCs, hence without the in vivo conversion concern. We showed that immunization with DCs, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase for de novo synthesis of a focally high 1,25-dihydroxyvitamin D concentration in the peripheral lymphoid tissues, induced Treg cells. In addition, such engineered DCs, when pulsed with a myelin antigen, led to myelin-specific suppression of ongoing experimental allergic encephalomyelitis (an MS animal model), and the disease suppression depended on forkhead-box-protein-P3(foxp3)+ Treg cells. Our data support a novel concept that immunogenic DCs can be engineered for myelin-specific therapy for MS.-Li, C.-H., Zhang, J., Baylink, D. J., Wang, X., Goparaju, N. B., Xu, Y., Wasnik, S., Cheng, Y., Berumen, E. C., Qin, X., Lau, K.-H. W., Tang, X. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Vaina de Mielina , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/uso terapéutico , Animales , Antígenos , Células de la Médula Ósea , Línea Celular , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica/inmunología , Tejido Linfoide , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo
18.
Nitric Oxide ; 79: 57-67, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30059767

RESUMEN

Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 µM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.


Asunto(s)
Hierro/análisis , Luminiscencia , Óxidos de Nitrógeno/análisis , Ozono/química , Animales , Ovinos
19.
Proc Natl Acad Sci U S A ; 112(29): E3893-900, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26150503

RESUMEN

Substantial advances have been made in the past two decades in the management of osteoporosis. However, none of the current medications can eliminate the risk of fracture and rejuvenate the skeleton. To this end, we recently reported that transplantation of hematopoietic stem/progenitor cells (HSCs) or Sca1(+) cells engineered to overexpress FGF2 results in a significant increase in lamellar bone matrix formation at the endosteum; but this increase was attended by the development of secondary hyperparathyroidism and severe osteomalacia. Here we switch the therapeutic gene to PDGFB, another potent mitogen for mesenchymal stem cells (MSCs) but potentially safer than FGF2. We found that modest overexpression of PDGFB using a relatively weak phosphoglycerate kinase (PGK) promoter completely avoided osteomalacia and secondary hyperparathyroidism, and simultaneously increased trabecular bone formation and trabecular connectivity, and decreased cortical porosity. These effects led to a 45% increase in the bone strength. Transplantation of PGK-PDGFB-transduced Sca1(+) cells increased MSC proliferation, raising the possibility that PDGF-BB enhances expansion of MSC in the vicinity of the hematopoietic niche where the osteogenic milieu propels the differentiation of MSCs toward an osteogenic destination. Our therapy should have potential clinical applications for patients undergoing HSC transplantation, who are at high risk for osteoporosis and bone fractures after total body irradiation preconditioning. It could eventually have wider application once the therapy can be applied without the preconditioning.


Asunto(s)
Huesos/fisiopatología , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Fosfatasa Alcalina/sangre , Animales , Antígenos Ly/metabolismo , Peso Corporal , Remodelación Ósea , Diferenciación Celular , Proliferación Celular , Hiperparatiroidismo/complicaciones , Hiperparatiroidismo/metabolismo , Hiperparatiroidismo/fisiopatología , Hiperparatiroidismo/terapia , Antígeno Ki-67/metabolismo , Lentivirus/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Modelos Biológicos , Neovascularización Fisiológica , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocalcina/sangre , Osteogénesis , Osteomalacia/complicaciones , Osteomalacia/fisiopatología , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Regiones Promotoras Genéticas/genética , Virus Formadores de Foco en el Bazo/metabolismo , Transducción Genética , Transgenes , Soporte de Peso
20.
Immunology ; 148(4): 326-38, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27083389

RESUMEN

Multiple sclerosis (MS) is an incurable central nervous system autoimmune disease. Understanding MS pathogenesis is essential for the development of new MS therapies. In the present study, we identified a novel microRNA (miR) that regulates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Expression of miR223 was up-regulated specifically in spinal cords and lymphoid organs but not in other examined tissues. A global miR223 knockout (miR223(-/-) ) in mice led to a significant delay in EAE onset, reduction in spinal cord lesion, and lessening of neurological symptoms. These protective effects could be reproduced in bone marrow chimeras reconstituted with miR223(-/-) haematopoietic stem cells. We also found that miR223 deficiency reduced T helper type 1 (Th1) and Th17 infiltration into spinal cords. To address underlying mechanisms, we investigated the role of miR223 in regulating the function, development and interaction of the major immune cells. Expression of the genes associated with dendritic cell (DC) activation (CD86 and MHC II) and Th1 and Th17 differentiation [interleukin-12 (IL-12) and IL-23, respectively] was significantly decreased in the spleens of miR223(-/-) mice bearing EAE. The miR223(-/-) DCs expressed significantly lower levels of basal and lipopolysaccharide-induced IL-12 and IL-23 compared with the wild-type DCs. These data are consistent with the observed lower efficiency of miR223(-/-) DCs to support Th1 and Th17 differentiation from naive T cells over-expressing an EAE antigen-specific T-cell receptor. Our data suggest that miR223 promotes EAE, probably through enhancing DC activation and subsequently the differentiation of naive T cells toward Th1 and Th17 effector cells.


Asunto(s)
Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/genética , MicroARNs/genética , Esclerosis Múltiple/genética , Médula Espinal/fisiología , Células TH1/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/genética , Células Cultivadas , Femenino , Humanos , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA