Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373179

RESUMEN

Glioblastoma (GBM) is known as the most aggressive type of malignant brain tumour, with an extremely poor prognosis of approximately 12 months following standard-of-care treatment with surgical resection, radiotherapy (RT), and temozolomide treatment. Novel RT-drug combinations are urgently needed to improve patient outcomes. Gold nanoparticles (GNPs) have demonstrated significant preclinical potential as radiosensitizers due to their unique physicochemical properties and their ability to pass the blood-brain barrier. The modification of GNP surface coatings with poly(ethylene) glycol (PEG) confers several therapeutic advantages including immune avoidance and improved cellular localisation. This study aimed to characterise both the radiosensitizing and immunomodulatory properties of differentially PEGylated GNPs in GBM cells in vitro. Two GBM cell lines were used, U-87 MG and U-251 MG. The radiobiological response was evaluated by clonogenic assay, immunofluorescent staining of 53BP1 foci, and flow cytometry. Changes in the cytokine expression levels were quantified by cytokine arrays. PEGylation improved the radiobiological efficacy, with double-strand break induction being identified as an underlying mechanism. PEGylated GNPs also caused the greatest boost in RT immunogenicity, with radiosensitization correlating with a greater upregulation of inflammatory cytokines. These findings demonstrate the radiosensitizing and immunostimulatory potential of ID11 and ID12 as candidates for RT-drug combination in future GBM preclinical investigations.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Humanos , Glioblastoma/metabolismo , Citocinas/uso terapéutico , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico
2.
Nanotechnology ; 31(13): 135102, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783387

RESUMEN

Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors. Gold nanoparticles (AuNPs) are considered as one of the best candidates because of their high radioenhancing property, simple synthesis and low toxicity. Ultra small AuNPs (core size of 2.4 nm and hydrodynamic diameter of 4.5 nm) covered with dithiolated diethylenetriaminepentaacetic acid (Au@DTDTPA) are of high interest because of their properties to bind MRI active or PET active compounds at their surface, to concentrate in some tumors and be eliminated via renal clearance thanks to their small size. These key figures make Au@DTDTPA the best candidate to develop image-guided radiotherapy. Surprisingly the capacity of the nanoparticles to penetrate cells, an important issue to predict radioenhancement, has not been established yet. Here, we report the uptake dynamics, internalization routes and excretion dynamics of Au@DTDTPA nanoparticles in various cancer cell lines including glioblastoma (U87-MG), chordoma (UM-Chor1), cervix (HeLa), prostate (PC3), and pancreatic (BxPC-3) cell lines as well as fibroblasts (Dermal fibroblasts). This study demonstrates a strong cell line dependence of the nanoparticle uptake and excretion dynamics. Different pathways of cell internalization evidenced here explain this dependence. As a major finding, the retention of Au@DTDTPA nanoparticles was found to be higher in cancer cells than in fibroblasts. This result strengthens the strategy of using nanoagents to improve tumor selectivity of radiation treatments. In particular Au@DTDTPA nanoparticles are good candidates to improve the treatment of radioresitant gliobastoma, pancreatic and prostate cancer in particular. In conclusion, the variability of cell-to-nanoparticle interaction is a new parameter to consider in the choice of nanoagents in a combined treatment.


Asunto(s)
Fibroblastos/citología , Oro/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos/química , Oro/química , Células HeLa , Humanos , Nanopartículas del Metal/química , Células PC-3 , Ácido Pentético/química , Fármacos Sensibilizantes a Radiaciones/química
3.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540386

RESUMEN

Ultrasmall polyaminocarboxylate-coated gold nanoparticles (NPs), Au@DTDTPA and Au@TADOTAGA, that have been recently developed exhibit a promising potential for image-guided radiotherapy. In order to render the radiosensitizing effect of these gold nanoparticles even more efficient, the study of their localization in cells is required to better understand the relation between the radiosensitizing properties of the agents and their localization in cells and in tumors. To achieve this goal, post-functionalization of Au@DTDTPA nanoparticles by near-infrared (NIF) organic dyes (aminated derivative of cyanine 5, Cy5-NH2) was performed. The immobilization of organic Cy5-NH2 dyes onto the gold nanoparticles confers to these radiosensitizers fluorescence properties which can be exploited for monitoring their internalization in cancerous cells, for determining their localization in cells by fluorescence microscopy (a common and powerful imaging tool in biology), and for following up on their accumulation in tumors after intravenous injection.


Asunto(s)
Carbocianinas/análisis , Colorantes Fluorescentes/análisis , Oro/análisis , Nanopartículas del Metal/análisis , Neoplasias/diagnóstico por imagen , Fármacos Sensibilizantes a Radiaciones/análisis , Animales , Carbocianinas/administración & dosificación , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/administración & dosificación , Oro/administración & dosificación , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Poliaminas/análisis , Fármacos Sensibilizantes a Radiaciones/administración & dosificación
4.
Small ; 10(16): 3325-37, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-24797733

RESUMEN

Understanding the relation between the structure and the reactivity of nanomaterials in the organism is a crucial step towards efficient and safe biomedical applications. The multi-scale approach reported here, allows following the magnetic and structural transformations of multicore maghemite nanoflowers in a medium mimicking intracellular lysosomal environment. By confronting atomic-scale and macroscopic information on the biodegradation of these complex nanostuctures, we can unravel the mechanisms involved in the critical alterations of their hyperthermic power and their Magnetic Resonance imaging T1 and T2 contrast effect. This transformation of multicore nanoparticles with outstanding magnetic properties into poorly magnetic single core clusters highlights the harmful influence of cellular medium on the therapeutic and diagnosis effectiveness of iron oxide-based nanomaterials. As biodegradation occurs through surface reactivity mechanism, we demonstrate that the inert activity of gold nanoshells can be exploited to protect iron oxide nanostructures. Such inorganic nanoshields could be a relevant strategy to modulate the degradability and ultimately the long term fate of nanomaterials in the organism.


Asunto(s)
Biodegradación Ambiental , Compuestos Férricos/química , Oro/química , Nanoestructuras , Imagen por Resonancia Magnética , Microscopía Electrónica de Transmisión
5.
Small ; 10(6): 1116-24, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24659273

RESUMEN

Owing to the high atomic number (Z) of gold element, the gold nanoparticles appear as very promising radiosensitizing agents. This character can be exploited for improving the selectivity of radiotherapy. However, such an improvement is possible only if irradiation is performed when the gold content is high in the tumor and low in the surrounding healthy tissue. As a result, the beneficial action of irradiation (the eradication of the tumor) should occur while the deleterious side effects of radiotherapy should be limited by sparing the healthy tissue. The location of the radiosensitizers is therefore required to initiate the radiotherapy. Designing gold nanoparticles for monitoring their distribution by magnetic resonance imaging (MRI) is an asset due to the high resolution of MRI which permits the accurate location of particles and therefore the determination of the optimal time for the irradiation. We recently demonstrated that ultrasmall gold nanoparticles coated by gadolinium chelates (Au@DTDTPA-Gd) can be followed up by MRI after intravenous injection. Herein, Au@DTDTPA and Au@DTDTPA-Gd were prepared in order to evaluate their potential for radiosensitization. Comet assays and in vivo experiments suggest that these particles appear well suited for improving the selectivity of the radiotherapy. The dose which is used for inducing similar levels of DNA alteration is divided by two when cells are incubated with the gold nanoparticles prior to the irradiation. Moreover, the increase in the lifespan of tumor bearing rats is more important when the irradiation is performed after the injection of the gold nanoparticles. In the case of treatment of rats with a brain tumor (9L gliosarcoma, a radio-resistant tumor in a radiosensitive organ), the delay between the intravenous injection and the irradiation was determined by MRI.


Asunto(s)
Medios de Contraste , Oro , Imagen por Resonancia Magnética , Nanopartículas del Metal , Fármacos Sensibilizantes a Radiaciones , Animales , Encéfalo/patología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Osteosarcoma/diagnóstico , Osteosarcoma/patología , Ratas , Ratas Sprague-Dawley , Bazo/citología , Análisis de Supervivencia
6.
Small ; 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24677791

RESUMEN

Owing to the high atomic number (Z) of gold element, the gold nanoparticles appear as very promising radiosensitizing agents. This character can be exploited for improving the selectivity of radiotherapy. However, such an improvement is possible only if irradiation is performed when the gold content is high in the tumor and low in the surrounding healthy tissue. As a result, the beneficial action of irradiation (the eradication of the tumor) should occur while the deleterious side effects of radiotherapy should be limited by sparing the healthy tissue. The location of the radiosensitizers is therefore required to initiate the radiotherapy. Designing gold nanoparticles for monitoring their distribution by magnetic resonance imaging (MRI) is an asset due to the high resolution of MRI which permits the accurate location of particles and therefore the determination of the optimal time for the irradiation. We recently demonstrated that ultrasmall gold nanoparticles coated by gadolinium chelates (Au@DTDTPA-Gd) can be followed up by MRI after intravenous injection. Herein, Au@DTDTPA and Au@DTDTPA-Gd were prepared in order to evaluate their potential for radiosensitization. Comet assays and in vivo experiments suggest that these particles appear well suited for improving the selectivity of the radiotherapy. The dose which is used for inducing similar levels of DNA alteration is divided by two when cells are incubated with the gold nanoparticles prior to the irradiation. Moreover, the increase in the lifespan of tumor bearing rats is more important when the irradiation is performed after the injection of the gold nanoparticles. In the case of treatment of rats with a brain tumor (9L gliosarcoma, a radio-resistant tumor in a radiosensitive organ), the delay between the intravenous injection and the irradiation was determined by MRI.

7.
RSC Adv ; 14(14): 9509-9513, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516151

RESUMEN

We elucidate the decomposition mechanism of hydrogen peroxide, which is formed by water radiolysis, by gold nanoparticles (GNPs) under X-ray irradiation. The variations in yields of hydrogen peroxide generated in the presence of GNPs are evaluated using the Ghormley technique. The increase of yields of OH radicals has been quantified using Ampliflu® Red solutions. Almost all hydrogen peroxide generated by irradiation of <25 Gy is decomposed by GNPs, while the yield of OH radicals increases by 1.6 times. The amount of OH radicals thus obtained is almost equivalent to that of the decomposed hydrogen peroxide. The decomposition of hydrogen peroxide is an essential reaction to produce additional OH radicals efficiently in the vicinity of GNPs.

8.
Int J Nanomedicine ; 18: 243-261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660336

RESUMEN

Purpose: This study aimed to evaluate the radiosensitizing potential of Au@DTDTPA(Gd) nanoparticles when combined with conventional external X-ray irradiation (RT) to treat GBM. Methods: Complementary biological models based on U87 spheroids including conventional 3D invasion assay, organotypic brain slice cultures, chronic cranial window model were implemented to investigate the impact of RT treatments (10 Gy single dose; 5×2 Gy or 2×5 Gy) combined with Au@DTDTPA(Gd) nanoparticles on tumor progression. The main tumor mass and its infiltrative area were analyzed. This work focused on the invading cancer cells after irradiation and their viability, aggressiveness, and recurrence potential were assessed using mitotic catastrophe quantification, MMP secretion analysis and neurosphere assays, respectively. Results: In vitro clonogenic assays showed that Au@DTDTPA(Gd) nanoparticles exerted a radiosensitizing effect on U87 cells, and in vivo experiments suggested a benefit of the combined treatment "RT 2×5 Gy + Au@DTDTPA(Gd)" compared to RT alone. Invasion assays revealed that invasion distance tended to increase after irradiation alone, while the combined treatments were able to significantly reduce tumor invasion. Monitoring of U87-GFP tumor progression using organotypic cultures or intracerebral grafts confirmed the anti-invasive effect of Au@DTDTPA(Gd) on irradiated spheroids. Most importantly, the combination of Au@DTDTPA(Gd) with irradiation drastically reduced the number, the viability and the aggressiveness of tumor cells able to escape from U87 spheroids. Notably, the combined treatments significantly reduced the proportion of escaped cells with stem-like features that could cause recurrence. Conclusion: Combining Au@DTDTPA(Gd) nanoparticles and X-ray radiotherapy appears as an attractive therapeutic strategy to decrease number, viability and aggressiveness of tumor cells that escape and can invade the surrounding brain parenchyma. Hence, Au@DTDTPA(Gd)-enhanced radiotherapy opens up interesting perspectives for glioblastoma treatment.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Humanos , Oro/farmacología , Glioblastoma/radioterapia , Gadolinio , Línea Celular Tumoral , Nanopartículas del Metal/uso terapéutico , Medios de Contraste , Quelantes
9.
Nanoscale ; 15(42): 17085-17096, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37847496

RESUMEN

Biomedical photothermal therapy with optical nanoparticles is based on the conversion of optical energy into heat through three steps: optical absorption, thermal conversion of the absorbed energy and heat transfer to the surrounding medium. The light-to-heat conversion efficiency (LHCE) has become one of the main metrics to quantitatively characterize the last two steps and evaluate the merit of nanoparticules for photothermal therapy. The estimation of the LHCE is mostly performed by monitoring the temperature evolution of a solution under laser irradiation. However, this estimation strongly depends on the experimental set-up and the heat balance model used. We demonstrate here, theoretically and experimentally, that the LHCE at multiple wavelengths can be efficiently and directly determined, without the use of models, by calibrated photoacoustic spectroscopy. The method was validated using already characterized colloidal suspensions of silver sulfide nanoparticles and maghemite nanoflowers and an uncertainty of 3 to 7% was estimated for the LHCE determination. Photoacoustic spectroscopy provides a new, precise and robust method of analysis of the photothermal capabilities of aqueous solutions of nanoagents.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35848997

RESUMEN

Functional colloidal nanoparticles capable of converting between various energy types are finding an increasing number of applications. One of the relevant examples concerns light-to-heat-converting colloidal nanoparticles that may be useful for localized photothermal therapy of cancers. Unfortunately, quantitative comparison and ranking of nanoheaters are not straightforward as materials of different compositions and structures have different photophysical and chemical properties and may interact differently with the biological environment. In terms of photophysical properties, the most relevant information to rank these nanoheaters is the light-to-heat conversion efficiency, which, along with information on the absorption capacity of the material, can be used to directly compare materials. In this work, we evaluate the light-to-heat conversion properties of 17 different nanoheaters belonging to different groups (plasmonic, semiconductor, lanthanide-doped nanocrystals, carbon nanocrystals, and metal oxides). We conclude that the light-to-heat conversion efficiency alone is not meaningful enough as many materials have similar conversion efficiencies─in the range of 80-99%─while they significantly differ in their extinction coefficient. We therefore constructed their qualitative ranking based on the external conversion efficiency, which takes into account the conventionally defined light-to-heat conversion efficiency and its absorption capacity. This ranking demonstrated the differences between the samples more meaningfully. Among the studied systems, the top-ranking materials were black porous silicon and CuS nanocrystals. These results allow us to select the most favorable materials for photo-based theranostics and set a new standard in the characterization of nanoheaters.

11.
Nanoscale ; 13(44): 18483-18497, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34752596

RESUMEN

Nanoparticle-mediated photothermal therapy (PTT) is an emerging modality to treat tumors with both spatial and temporal control provided by light activation. Gold decorated iron oxide nanoflowers (GIONF) are good candidates for PTT due to their biocompatibility, biodegradability and light-to-heat conversion. Profound changes in the tumor immune environment might be early induced by the gold and iron oxide metallic agents in addition to the photothermal effects. This study aims to elucidate the outcome of GIONF on their own, and of GIONF-induced mild hyperthermia in the tumor immune infiltrate in a murine model of triple negative breast cancer. First we explored the effects of 24 h GIONF exposure on bone-marrow derived macrophages (BMDM), revealing significant effects on the BMDM phenotype and secretion, 6 days post-incubation, with important downregulation of several cytokines and MHCII expression, predominantly towards a pro-inflammatory response. Intratumoral administration of GIONF promoted an increase in monocyte recruitment at day 1 post-administration, shifting towards a pro-inflammatory anti-tumor microenvironment with lower Treg population and a 4 fold lower CD4/CD8 ratio compared to the control at day 12. On top of the GIONF effects, mild hyperthermia (43 °C for 15 min), although it does not induce significant changes in tumor growth, resulted in an additional increase of CD8+ T lymphocytes and pro-inflammatory cytokines. The combination of a timely controlled immune response to GIONF and to mild hyperthermia could be used as a remotely triggered adjuvant treatment to immunotherapy approaches at the best favorable time-window.


Asunto(s)
Oro , Hipertermia Inducida , Animales , Línea Celular Tumoral , Compuestos Férricos , Hipertermia , Ratones , Fototerapia
12.
Colloids Surf B Biointerfaces ; 205: 111875, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34058691

RESUMEN

Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time. An original encapsulation procedure using the polyethyleneimine (PEI) was set up to electrostatically entrap AuNP in biodegradable poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol -PLGA (PLGA-PEG) NP. Hydrodynamic diameters of NP were dependent of the PEI/Au ratio and comprised between 115 and 196 nm for ratios equal or superior to 4. Encapsulation yield was close to 90 % whereas no loading was observed without PEI. No toxicity was observed after 24 h exposure in hepatocyte cell-lines. Entrapement of AuNP in polymeric nanocarriers facilitated the passive uptake in cancer cells after only 2 h incubation. In healthy rat, the encapsulation allowed increasing the gold concentration in the blood within the first hour after intravenous administration. Polymeric nanoparticles were sequestered in the liver and the spleen rather than the kidneys. T1-weighted magnetic resonance demonstrated that encapsulation process did not alter the contrast agent properties of gadolinium. The encapsulation of the gold nanoparticles in PLGA particles paves the way to innovative imaging-guided anticancer therapies in personalized medicine.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Portadores de Fármacos , Oro , Tamaño de la Partícula , Polietilenglicoles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Distribución Tisular
13.
Nanoscale ; 13(20): 9236-9251, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33977943

RESUMEN

Glioblastoma are characterized by an invasive phenotype, which is thought to be responsible for recurrences and the short overall survival of patients. In the last decade, the promising potential of ultrasmall gadolinium chelate-coated gold nanoparticles (namely Au@DTDTPA(Gd)) was evidenced for image-guided radiotherapy in brain tumors. Considering the threat posed by invasiveness properties of glioma cells, we were interested in further investigating the biological effects of Au@DTDTPA(Gd) by examining their impact on GBM cell migration and invasion. In our work, exposure of U251 glioma cells to Au@DTDTPA(Gd) led to high accumulation of gold nanoparticles, that were mainly diffusely distributed in the cytoplasm of the tumor cells. Experiments pointed out a significant decrease in glioma cell invasiveness when exposed to nanoparticles. As the proteolysis activities were not directly affected by the intracytoplasmic accumulation of Au@DTDTPA(Gd), the anti-invasive effect cannot be attributed to matrix remodeling impairment. Rather, Au@DTDTPA(Gd) nanoparticles affected the intrinsic biomechanical properties of U251 glioma cells, such as cell stiffness, adhesion and generated traction forces, and significantly reduced the formation of protrusions, thus exerting an inhibitory effect on their migration capacities. Consistently, analysis of talin-1 expression and membrane expression of beta 1 integrin evoke the stabilization of focal adhesion plaques in the presence of nanoparticles. Taken together, our results highlight the interest in Au@DTDTPA(Gd) nanoparticles for the therapeutic management of astrocytic tumors, not only as a radio-enhancing agent but also by reducing the invasive potential of glioma cells.


Asunto(s)
Glioma , Nanopartículas del Metal , Línea Celular Tumoral , Gadolinio , Glioma/tratamiento farmacológico , Oro , Humanos , Nanopartículas del Metal/toxicidad , Invasividad Neoplásica
14.
Langmuir ; 26(7): 4941-50, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20000593

RESUMEN

This article describes an original strategy to enable solid-phase oligodeoxyribonucleotide (ODN) synthesis on nanosized silica particles. It consists of the reversible immobilization of silica nanoparticles (NPs) on micrometric silica beads. The resulting assemblies, called nano-on-micro (NOM) systems, are well adapted to ODN synthesis in an automated instrument. First, NPs are derivatized with OH functions. For NOM assembly preparation, these functions react with the silanols of the microbeads under specific experimental conditions. Furthermore, OH groups allow ODN synthesis on the nanoparticles via phosphoramidite chemistry. The stability of the NOM assemblies during ODN solid-phase synthesis is confirmed by scanning and transmission electron microscopy (SEM and TEM, respectively), together with dynamic light scattering analyses. Then, the release of ODN-functionalized nanoparticles is performed under mild conditions (1% NH(4)OH in water, 1 h, 60 degrees C). Our technique provides silica nanoparticles well functionalized with oligonucleotides, as demonstrated by hybridization experiments conducted with the cDNA target.


Asunto(s)
Nanopartículas/química , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Teóricos , Nanopartículas/ultraestructura , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/química , Dióxido de Silicio/química
15.
ACS Nano ; 14(5): 5738-5753, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32338871

RESUMEN

Physical oncology recognizes tissue stiffness mediated by activation of cancer-associated fibroblasts (CAF) and extracellular matrix remodeling as an active modulator of tumorigenesis, treatment resistance, and clinical outcome. Cholangiocarcinoma (CCA) is a highly aggressive and chemoresistant desmoplastic cancer enriched in CAF. CCA's stroma mechanical properties are considered responsible for its chemoresistant character. To normalize tumor mechanics, we propose a physical strategy based on remotely light-activated nanohyperthermia to modulate the tumor microenvironment. In this study, we report the use of multifunctional iron oxide nanoflowers decorated with gold nanoparticles (GIONF) as efficient nanoheaters to achieve complete tumor regression following three sessions of mild hyperthermia. The preferential uptake of GIONF by CAF allowed targeting this cell population, which resulted in a significant early reduction of tumor stiffness followed by tumor regression. In conclusion, our study highlights a spatially and temporally controlled physical strategy, GIONF-mediated photothermal therapy to deplete CAF and normalize the tumor mechanics that may apply to desmoplastic cancer and CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Nanopartículas del Metal , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos , Colangiocarcinoma/terapia , Fibroblastos , Oro , Humanos , Microambiente Tumoral
16.
Pharmaceutics ; 12(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098286

RESUMEN

Actinium-225 (225Ac) is receiving increased attention for its application in targeted radionuclide therapy, due to the short range of its emitted alpha particles in conjunction with their high linear energy transfer, which lead to the eradication of tumor cells while sparing neighboring healthy tissue. The objective of our study was the evaluation of a gold nanoparticle radiolabeled with 225Ac as an injectable radiopharmaceutical form of brachytherapy for local radiation treatment of cancer. Au@TADOTAGA was radiolabeled with 225Ac at pH 5.6 (30 min at 70 °C), and in vitro stability was evaluated. In vitro cytotoxicity was assessed in U-87 MG cancer cells, and in vivo biodistribution was performed by intravenous and intratumoral administration of [225Ac]225Ac-Au@TADOTAGA in U-87 MG tumor-bearing mice. A preliminary study to assess therapeutic efficacy of the intratumorally-injected radio-nanomedicine was performed over a period of 22 days, while the necrotic effect on tumors was evaluated by a histopathology study. We have shown that [225Ac]225Ac-Au@TADOTAGA resulted in the retardation of tumor growth after its intratumoral injection in U87MG tumor-bearing mice, even though very low activities were injected per mouse. This gold nanoparticle radiopharmaceutical could be applied as an unconventional brachytherapy in injectable form for local radiation treatment of cancer.

17.
Toxicol Appl Pharmacol ; 237(1): 102-10, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19265716

RESUMEN

2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) and related compounds are a series of anti-cancer candidate pharmaceuticals, that have been shown to activate the AhR. We show that these compounds are high-affinity ligands for the rat AhR, but a quantitative assay for their ability to induce CYP1A1 RNA in H4IIEC3 cells, a measure of activation of the AhR, showed a poor relationship between affinity for the AhR and ability to induce CYP1A1 RNA. 5F 203, an agonist with low potency, was able to antagonise the induction of CYP1A1 RNA by TCDD, while IH 445, a potent agonist, did not antagonise the induction of CYP1A1 RNA by TCDD, and Schild analysis confirmed 5F 203 to be a potent antagonist of the induction of CYP1A1 RNA by TCDD in H4IIEC3 cells. In contrast, several benzothiazoles show potent induction of CYP1A1 RNA in human MCF-7 cells, and 5F 203 is unable to detectably antagonise the induction of CYP1A1 RNA in MCF-7 cells, showing a species difference in antagonism. Evaluation of the anti-proliferative activity of benzothiazoles showed that the ability to agonise the AhR correlated with growth inhibition both in H4IIEC3 cells for a variety of benzothiazoles, and between H4IIEC3 and MCF-7 cells for 5F 203, suggesting an important role of agonism of the AhR in the anti-proliferative activity of benzothiazoles.


Asunto(s)
Antineoplásicos/farmacología , Benzotiazoles/farmacología , Citocromo P-450 CYP1A1/efectos de los fármacos , Receptores de Hidrocarburo de Aril/agonistas , Tiazoles/farmacología , Actinas/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Análisis de Varianza , Animales , Línea Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Inducción Enzimática/efectos de los fármacos , Humanos , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar , Receptores de Hidrocarburo de Aril/metabolismo , Especificidad de la Especie , Estadísticas no Paramétricas
18.
Colloids Surf B Biointerfaces ; 175: 606-613, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30580151

RESUMEN

Plasmid DNA in aerated aqueous solution is used as a probe to determine whose of the reactive oxygen species (ROS) generated after absorption of ultra-soft X-rays (USX) take part in biomolecule damage in the presence and in absence of Gold Nano-Particles (GNP) and specific scavengers. Citrate-coated GNPs with core sizes of 6, 10 and 25 nm are synthetized and characterized, especially in terms of plasmon band shift, ζ-potential and hydrodynamic radii (respectively 9, 21 and 30 nm). We confirm the radiosensitizing effect of GNP and show that the SSB number per plasmid increases when, for a same mass of gold element, the core size of the gold nanoparticles decreases. Hydroxyl radicals (OH) are scavenged using the positively-charged 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) and the neutral dimethyl sulfoxide (DMSO) molecules. Due to both negatively-charged environments of DNA and GNP, at identical scavenging capacity, TRIS is more effective at quenching OH than DMSO. The strong radiosensitizing effect of hydroxyl radicals is confirmed. Methanoate anions are then used to transform OH into hydrogen peroxide; the latter being known to be non-aggressive regarding DNA in the absence of easily oxidable metallic ions (Fenton reactions). Surprisingly, in the presence of GNP, high DNA damage yields are observed even though hydrogen peroxide might not be hold as responsible. Conversely, the radiosensitizing effect of GNP is not observed anymore when H2O2 is scavenged using pyruvate ions. We demonstrate that hydrogen peroxide constitutes quite unexpectedly a hidden stock of OH which are activated at the surface of the GNP by decomposition of H2O2 molecules.


Asunto(s)
Roturas del ADN de Cadena Simple/efectos de la radiación , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Nanopartículas del Metal/efectos de la radiación , Plásmidos/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/química , Ácido Cítrico/química , Dimetilsulfóxido/química , Formiatos/química , Oro/química , Radical Hidroxilo/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Plásmidos/química , Ácido Pirúvico/química , Soluciones , Trometamina/química , Rayos X
19.
Int J Pharm ; 569: 118583, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31376468

RESUMEN

Nanoparticles are being developed for a wide range of medical applications such as, controlled release, drug delivery systems or imagery, theranostics, implants…. For the moment, there is no legal definition of nanoparticles or nanomaterials for therapeutic use. The specific case of gold nanoparticles is not an exception: their current definition as nanoparticle material does not correspond to classic pharmaceutical ingredients as described in Pharmacopoeias. In this study, more than 30 different batches of citrate stabilized gold nanoparticles (AuNP) were synthesized and analyzed thanks to both classical approaches (UV-Vis spectrophotometry, dynamic light scattering coupled or not to electrophoresis …) and capillary zone electrophoresis (CZE) coupled to diode array detection to assess their purity and impurity profiles. These techniques led to the beginning of defined specifications, a key step for the use of gold nanoparticles as pharmaceutical ingredients. CZE was demonstrated suitable to evaluate a batch-to-batch quality control, to monitor the purification processes and to follow the stability of 18 different batches for 20 days. Finally, commercially available AuNP samples were tested and the results compared to the provided certificates of analysis.


Asunto(s)
Ácido Cítrico/química , Oro/química , Nanopartículas del Metal/química , Acetatos/química , Estabilidad de Medicamentos , Electroforesis Capilar , Poliaminas/química , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA