Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993311

RESUMEN

Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.


Asunto(s)
Células Madre Pluripotentes , Transcriptoma , Animales , Blastocisto/metabolismo , Epigénesis Genética , Estratos Germinativos , Ratones , Células Madre Pluripotentes/metabolismo , Conejos , Transcriptoma/genética
2.
Mol Cell ; 65(5): 873-884.e8, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257702

RESUMEN

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.


Asunto(s)
Núcleo Celular/metabolismo , Reprogramación Celular , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Histonas/metabolismo , Técnicas de Transferencia Nuclear , Transcripción Genética , Animales , Animales Modificados Genéticamente , Línea Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina , Clonación Molecular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Oocitos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Xenopus laevis
3.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35048992

RESUMEN

During the first cell cycles of early development, the chromatin of the embryo is highly reprogrammed while the embryonic genome starts its own transcription. The spatial organization of the genome is an important process that contributes to regulating gene transcription in time and space. It has, however, been poorly studied in the context of early embryos. To study the cause-and-effect link between transcription and spatial organization in embryos, we focused on ribosomal genes, which are silent initially but start to be transcribed in 2-cell mouse embryos. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very particular manner between 2-cell and 16-cell stage. By using drugs that interfere with ribosomal DNA transcription, we showed that this organization - which is totally different in somatic cells - depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences once the 4-cell stage has been reached.


Asunto(s)
Cromatina , ARN Ribosómico , Animales , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , Embrión de Mamíferos/metabolismo , Ratones , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Transcripción Genética
4.
Exp Cell Res ; 389(2): 111908, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32057751

RESUMEN

Both embryo-derived (ESC) and induced pluripotent stem cell (iPSC) lines have been established in rabbit. They exhibit the essential characteristics of primed pluripotency. In this review, we described their characteristic features at both molecular and functional levels. We also described the attempts to reprogram rabbit pluripotent stem cells (rbPSCs) toward the naive state of pluripotency using methods established previously to capture this state in rodents and primates. In the last section, we described and discussed our current knowledge of rabbit embryo development pertaining to the mechanisms of early lineage segregation. We argued that the molecular signature of naive-state pluripotency differs between mice and rabbits. We finally discussed some of the key issues to be addressed for capturing the naive state in rbPSCs, including the generation of embryo/PSC chimeras.


Asunto(s)
Quimera/embriología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Animales , Diferenciación Celular , Quimera/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Conejos
5.
Genes Dev ; 26(9): 920-32, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22499591

RESUMEN

In mammals, totipotent embryos are formed by fusion of highly differentiated gametes. Acquisition of totipotency concurs with chromatin remodeling of parental genomes, changes in the maternal transcriptome and proteome, and zygotic genome activation (ZGA). The inefficiency of reprogramming somatic nuclei in reproductive cloning suggests that intergenerational inheritance of germline chromatin contributes to developmental proficiency after natural conception. Here we show that Ring1 and Rnf2, components of Polycomb-repressive complex 1 (PRC1), serve redundant transcriptional functions during oogenesis that are essential for proper ZGA, replication and cell cycle progression in early embryos, and development beyond the two-cell stage. Exchange of chromosomes between control and Ring1/Rnf2-deficient metaphase II oocytes reveal cytoplasmic and chromosome-based contributions by PRC1 to embryonic development. Our results strongly support a model in which Polycomb acts in the female germline to establish developmental competence for the following generation by silencing differentiation-inducing genes and defining appropriate chromatin states.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Oogénesis/genética , Proteínas Represoras/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Blastocisto/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Femenino , Factor de Transcripción GATA4/genética , Meiosis/genética , Ratones , Ratones Mutantes , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Cigoto/metabolismo
6.
Chromosoma ; 127(3): 387-403, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29666907

RESUMEN

Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.


Asunto(s)
Núcleo Celular/genética , Desarrollo Embrionario/genética , Heterocromatina/genética , Animales , Núcleo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Conejos
7.
Reproduction ; 158(4): 313-322, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31426029

RESUMEN

Heat stress compromises bovine oocyte developmental competence, but the effects of high temperature during oocyte maturation on embryo chromatin organization is unknown. In this study bovine oocytes were exposed to heat shock (41°C) for 12 h during in vitro maturation and then submitted to in vitro fertilization. The heat shock did not affect (P > 0.05) the cleavage but reduced (P < 0.01) the blastocyst rate on Day 7 and Day 8. No effect (P > 0.05) on total cell number was found, but the heat shock increased (P < 0.05) the proportion of apoptotic cells in blastocysts at Day 8. Immunofluorescence analysis of H3K9me3 and HP1 was performed in embryos at 52 h post in vitro fertilization. An accumulation of H3K9me3 in the nuclei of embryos derived from heat-shocked oocytes at four-cell and eight-cell stages was found. Also, a non-expected higher proportion (P < 0.05) of four-cell stage embryos displaying nuclei with increased HP1 fluorescence was observed, suggesting an abnormal chromatin compaction in embryos from heat-shocked oocytes. Embryos at eight-cell stage derived from heat-shocked oocytes displayed lower (P < 0.05) relative amount of HSP40 transcripts than control ones. In conclusion, heat shock before fertilization has an effect on embryo chromatin, influencing the accumulation of H3K9me3 and HP1 in early embryos as well as further development.


Asunto(s)
Blastocisto/patología , Cromatina/química , Embrión de Mamíferos/patología , Respuesta al Choque Térmico , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/patología , Oogénesis , Animales , Apoptosis , Blastocisto/metabolismo , Bovinos , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo
8.
Biol Reprod ; 94(4): 95, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26984997

RESUMEN

The nucleolus is a dynamic nuclear compartment that is mostly involved in ribosome subunit biogenesis; however, it may also play a role in many other biological processes, such as stress response and the cell cycle. Mainly using electron microscopy, several studies have tried to decipher how active nucleoli are set up during early development in mice. In this study, we analyzed nucleologenesis during mouse early embryonic development using 3D-immunofluorescent detection of UBF and Nopp140, two proteins associated with different nucleolar compartments. UBF is a transcription factor that helps maintain the euchromatic state of ribosomal genes; Nopp140 is a phosphoprotein that has been implicated in pre-rRNA processing. First, using detailed image analyses and the in situ proximity ligation assay technique, we demonstrate that UBF and Nopp140 dynamic redistribution between the two-cell and blastocyst stages (time of implantation) is correlated with morphological and structural modifications that occur in embryonic nucleolar compartments. Our results also support the hypothesis that nucleoli develop at the periphery of nucleolar precursor bodies. Finally, we show that the RNA polymerase I inhibitor CX-5461: 1) disrupts transcriptional activity, 2) alters preimplantation development, and 3) leads to a complete reorganization of UBF and Nopp140 distribution. Altogether, our results underscore that highly dynamic changes are occurring in the nucleoli of embryos and confirm a close link between ribosomal gene transcription and nucleologenesis during the early stages of development.


Asunto(s)
ADN Ribosómico/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Animales , Benzotiazoles , Femenino , Ratones Endogámicos C57BL , Naftiridinas , ARN Polimerasa I/antagonistas & inhibidores
9.
Biol Reprod ; 95(6): 123, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27760750

RESUMEN

The first lineage specification during mammalian embryo development can be visually distinguished at the blastocyst stage. Two cell lineages are observed on the embryonic-abembryonic axis of the blastocyst: the inner cell mass and the trophectoderm. The timing and mechanisms driving this process are still not fully understood. In mouse embryos, cells seem prepatterned to become certain cell lineage because the first cleavage plane has been related with further embryonic-abembryonic axis at the blastocyst stage. Nevertheless, this possibility has been very debatable. Our objective was to determine whether this would be the case in another mammalian species, the bovine. To achieve this, cells of in vitro produced bovine embryos were traced from the 2-cell stage to the blastocyst stage. Blastocysts were then classified according to the allocation of the labeled cells in the embryonic and/or abembryonic part of the blastocyst. Surprisingly, we found that there is a significant percentage of the embryos (∼60%) with labeled and nonlabeled cells randomly distributed and intermingled. Using time-lapse microscopy, we have identified the emergence of this random pattern at the third to fourth cell cycle, when cells started to intermingle. Even though no differences were found on morphokinetics among different embryos, these random blastocysts and those with labeled cells separated by the embryonic-abembryonic axis (deviant pattern) are significantly bigger; moreover deviant embryos have a significantly higher number of cells. Interestingly, we observed that daughter cells allocation at the blastocyst stage is not affected by biopsies performed at an earlier stage.


Asunto(s)
Blastocisto/citología , Blastómeros/citología , Linaje de la Célula/fisiología , Desarrollo Embrionario/fisiología , Animales , Blastocisto/metabolismo , Blastómeros/metabolismo , Bovinos , Metilación de ADN , Histonas/metabolismo
10.
BMC Genomics ; 15: 487, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24942464

RESUMEN

Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level.


Asunto(s)
Epigénesis Genética , Genoma , Investigación , Epigenómica , Genómica , Humanos
11.
Mol Reprod Dev ; 81(2): 100-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24150914

RESUMEN

In mammals, epigenetic modifications are globally rearranged after fertilization, when gametes fuse to form the embryo. While gametes carry special epigenetic signatures and a unique nuclear organization, they attain embryo-specific patterns after fertilization. This "reprogramming" is promoted by intimate contact between the parental inherited genomes and the oocyte cytoplasm over the first cell cycles of development. Although the mechanisms of this reprogramming remain poorly understood, it appears that the particular epigenetic landscape established after fertilization is essential for further development. This review looks at histone post-translational modifications, focusing on their functions in chromatin organization and their role in nuclear architecture during mouse embryonic development. Epigenetic changes linked to the use of assisted reproductive technologies are also considered.


Asunto(s)
Blastocisto , Histonas , Procesamiento Proteico-Postraduccional , Animales , Desarrollo Embrionario , Epigénesis Genética , Femenino , Masculino , Ratones
12.
Reprod Fertil Dev ; 27(1): 53-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25472044

RESUMEN

It is very important for embryologists to understand how parental inherited genomes are reprogrammed after fertilisation in order to obtain good-quality embryos that will sustain further development. In mammals, it is now well established that important epigenetic modifications occur after fertilisation. Although gametes carry special epigenetic signatures, they should attain embryo-specific signatures, some of which are crucial for the production of healthy embryos. Indeed, it appears that proper establishment of different epigenetic modifications and subsequent scaffolding of the chromatin are crucial steps during the first cleavages. This 'reprogramming' is promoted by the intimate contact between the parental inherited genomes and the oocyte cytoplasm after fusion of the gametes. This review introduces two main epigenetic players, namely histone post-translational modifications and DNA methylation, and highlights their importance during early embryonic development.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Reparación del ADN/fisiología , Embrión de Mamíferos/fisiología , Epigénesis Genética/fisiología , Histonas/metabolismo , Modelos Biológicos , Procesamiento Proteico-Postraduccional/fisiología , Animales , Cruzamiento/métodos , Embrión de Mamíferos/citología , Técnicas de Transferencia Nuclear
13.
Dev Biol ; 368(2): 304-11, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22659081

RESUMEN

Several research groups have suggested that the embryonic-abembryonic (Em-Ab) axis in the mouse can be predicted by the first cleavage plane of the early embryo. Currently, it is not known whether this early patterning occurs in cloned embryos produced by nuclear transfer and whether it affects development to term. In this work, the relationship between the first cleavage plane and the Em-Ab axis was determined by the labeling of one blastomere in cloned mouse embryos at the 2-cell stage, followed by ex-vivo tracking until the blastocyst stage. The results demonstrate that approximately half of the cloned blastocysts had an Em-Ab axis perpendicular to the initial cleavage plane of the 2-cell stage. These embryos were classified as "orthogonal" and the remainder as "deviant". Additionally, we report here that cloned embryos were significantly more often orthogonal than their naturally fertilized counterparts and overexpressed Sox2. Orthogonal cloned embryos demonstrated a higher rate of post-implantation embryonic development than deviant embryos, but cloned pups did not all survive. These results reveal that the angular relationship between the Em-Ab axis and the first cleavage plane can influence later development and they support the hypothesis that proper early patterning of mammalian embryos is required after nuclear transfer.


Asunto(s)
Blastocisto/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Animales , Blastocisto/metabolismo , Clonación de Organismos , Transferencia de Embrión , Embrión de Mamíferos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Microscopía Confocal , Proteína Homeótica Nanog , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética
14.
Reproduction ; 145(2): 149-59, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23221012

RESUMEN

To investigate the embryonic genome organization upon fertilization and somatic cell nuclear transfer (SCNT), we tracked HP1ß and CENP, two well-characterized protein markers of pericentric and centromeric compartments respectively, in four types of embryos produced by rabbit in vivo fertilization, rabbit parthenogenesis, rabbit-to-rabbit, and bovine-to-rabbit SCNT. In the interphase nuclei of rabbit cultured fibroblasts, centromeres and associated pericentric heterochromatin are usually isolated. Clustering into higher-order chromatin structures, such as the chromocenters seen in mouse and bovine somatic cells, could not be observed in rabbit fibroblasts. After fertilization, centromeres and associated pericentric heterochromatin are quite dispersed in rabbit embryos. The somatic-like organization is progressively established and completed only by the 8/16-cell stage, a stage that corresponds to major embryonic genome activation in this species. In SCNT embryos, pericentric heterochromatin distribution typical for rabbit and bovine somatic cells was incompletely reverted into the 1-cell embryonic form with remnants of heterochromatin clusters in 100% of bovine-to-rabbit embryos. Subsequently, the donor cell nuclear organization was rapidly re-established by the 4-cell stage. Remarkably, the incomplete remodeling of bovine-to-rabbit 1-cell embryos was associated with delayed transcriptional activation compared with rabbit-to-rabbit embryos. Together, the results confirm that pericentric heterochromatin spatio-temporal reorganization is an important step of embryonic genome reprogramming. It also appears that genome reorganization in SCNT embryos is mainly dependent on the nuclear characteristics of the donor cells, not on the recipient cytoplasm.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Desarrollo Embrionario/genética , Heterocromatina/metabolismo , Técnicas de Transferencia Nuclear , Células 3T3 , Animales , Bovinos , Ensamble y Desensamble de Cromatina/genética , Embrión de Mamíferos , Desarrollo Embrionario/fisiología , Femenino , Fertilización In Vitro/veterinaria , Heterocromatina/genética , Células Híbridas/citología , Células Híbridas/metabolismo , Masculino , Ratones , Técnicas de Transferencia Nuclear/veterinaria , Embarazo , Conejos/embriología , Especificidad de la Especie
15.
BMC Dev Biol ; 12: 30, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23095683

RESUMEN

BACKGROUND: Embryonic development proceeds through finely tuned reprogramming of the parental genomes to form a totipotent embryo. Cells within this embryo will then differentiate and give rise to all the tissues of a new individual. Early embryonic development thus offers a particularly interesting system in which to analyze functional nuclear organization. When the organization of higher-order chromatin structures, such as pericentromeric heterochromatin, was first analyzed in mouse embryos, specific nuclear rearrangements were observed that correlated with embryonic genome activation at the 2-cell stage. However, most existing analyses have been conducted by visual observation of fluorescent images, in two dimensions or on z-stack sections/projections, but only rarely in three dimensions (3D). RESULTS: In the present study, we used DNA fluorescent in situ hybridization (FISH) to localize centromeric (minor satellites), pericentromeric (major satellites), and telomeric genomic sequences throughout the preimplantation period in naturally fertilized mouse embryos (from the 1-cell to blastocyst stage). Their distribution was then analyzed in 3D on confocal image stacks, focusing on the nucleolar precursor bodies and nucleoli known to evolve rapidly throughout the first developmental stages. We used computational imaging to quantify various nuclear parameters in the 3D-FISH images, to analyze the organization of compartments of interest, and to measure physical distances between these compartments. CONCLUSIONS: The results highlight differences in nuclear organization between the two parental inherited genomes at the 1-cell stage, i.e. just after fertilization. We also found that the reprogramming of the embryonic genome, which starts at the 2-cell stage, undergoes other remarkable changes during preimplantation development, particularly at the 4-cell stage.


Asunto(s)
Núcleo Celular/metabolismo , Embrión de Mamíferos/citología , Desarrollo Embrionario , Cigoto/citología , Animales , Nucléolo Celular/metabolismo , Núcleo Celular/fisiología , Forma del Núcleo Celular , Polaridad Celular , Centrómero/genética , Centrómero/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Femenino , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Telómero/genética , Telómero/metabolismo
16.
J Reprod Dev ; 58(4): 467-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22572731

RESUMEN

Phosphorylation of histone H3 at Ser10 (H3S10P) has been linked to a variety of cellular processes, such as chromosome condensation and gene activation/silencing. Remarkably, in mammalian somatic cells, H3S10P initiates in the pericentromeric heterochromatin during the late G2 phase, and phosphorylation spreads throughout the chromosomes arms in prophase, being maintained until the onset of anaphase when it gets dephosphorylated. Considerable studies have been carried out about H3S10P in different organisms; however, there is little information about this histone modification in mammalian embryos. We hypothesized that this epigenetic modification could also be a marker of pericentromeric heterochromatin in preimplantation embryos. We therefore followed the H3S10P distribution pattern in the G1/S and G2 phases through the entire preimplantation development in in vivo mouse embryos. We paid special attention to its localization relative to another pericentromeric heterochromatin marker, HP1ß and performed immunoFISH using specific pericentromeric heterochromatin probes. Our results indicate that H3S10P presents a remarkable distribution pattern in preimplantation mouse embryos until the 4-cell stage and is a better marker of pericentromeric heterochromatin than HP1ß. After the 8-cell stage, H3S10P kinetic is more similar to the somatic one, initiating during G2 in chromocenters and disappearing upon telophase. Based on these findings, we believe that H3S10P is a good marker of pericentromeric heterochromatin, especially in the late 1- and 2-cell stages as it labels both parental genomes and that it can be used to further investigate epigenetic regulation and heterochromatin mechanisms in early preimplantation embryos.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario , Epigénesis Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Interfase , Serina/metabolismo , Animales , Biomarcadores/metabolismo , Blastocisto/citología , Femenino , Hibridación Fluorescente in Situ , Metafase , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Fosforilación , Embarazo , Profase , Procesamiento Proteico-Postraduccional , Telofase
17.
PLoS Comput Biol ; 6(7): e1000853, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20628576

RESUMEN

In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.


Asunto(s)
Núcleo Celular/química , Centrómero/química , Heterocromatina/química , Imagenología Tridimensional , Modelos Estadísticos , Animales , Arabidopsis/citología , Embrión de Mamíferos/citología , Femenino , Glándulas Mamarias Animales/citología , Microscopía Confocal , Método de Montecarlo , Proteínas Nucleares/química , Conejos
18.
Methods Mol Biol ; 2214: 109-123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944906

RESUMEN

Somatic cell nuclear transfer (SCNT) is a powerful technique, although challenging, to study reprograming into the totipotent state of differentiated nuclei in mammals. This procedure was initially applied in farm animals, then rodents, and more recently in primates. Nuclear transfer of embryonic stem cells is known to be more efficient, but many types of somatic cells have now been successfully reprogramed with this procedure. Moreover, SCNT reprograming is more effective on a per cell basis than induced Pluripotent Stem Cells (iPSC) and provides interesting clues regarding the underlying processes. In this chapter, we describe the protocol of nuclear transfer in mouse that combines cell cycle synchronization of the donor cells, enucleation of metaphase II oocyte and Piezo-driven injection of a donor cell nucleus followed by activation of the reconstructed embryos and nonsurgical transfer into pseudo-pregnant mice. Moreover, this protocol includes two facultative steps to erase the epigenetic "memory" of the donor cells and improve chromatin remodeling by histones modifications targeting.


Asunto(s)
Técnicas de Cultivo de Embriones/métodos , Embrión de Mamíferos/citología , Técnicas de Transferencia Nuclear , Animales , Ciclo Celular , Células Cultivadas , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo , Embarazo
19.
Reproduction ; 139(1): 129-37, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19778997

RESUMEN

Efficient reprograming of the donor cell genome in nuclear transfer (NT) embryos is linked to the ability of the embryos to sustain full-term development. As the nuclear architecture has recently emerged as a key factor in the regulation of gene expression, we questioned whether early bovine embryos obtained from transfer of cultured fibroblasts into enucleated oocytes would adopt an embryo-like nuclear organization. We studied the dynamics of constitutive heterochromatin in the stages prior to embryonic genome activation by distribution analysis of heterochromatin protein CBX1 (HP1), centromeric proteins CENPA and CENPB, and histone H3 three-methylated at lysine 9. Then we applied descriptive, quantitative, and co-localization analyses. A dramatic reorganization of heterochromatic blocks of somatic donor cells was first observed in the late one-cell stage NT embryos. Then at two- and four-cell stages, we found two types of NT embryos: one displaying noncondensed heterochromatin patches similar to IVF embryos, whereas the second type displayed condensed heterochromatin blocks, normally observed in IVF embryos only after the eight-cell stage. These analyses discriminate for the first time two contrasted types of nuclear organization in NT embryos, which may correspond to different functional states of the nuclei. The relationship with the somatic nucleus reprograming efficiency is discussed.


Asunto(s)
Ensamble y Desensamble de Cromatina , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Heterocromatina/metabolismo , Animales , Autoantígenos/metabolismo , Bovinos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Reprogramación Celular , Proteína A Centromérica , Proteína B del Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Clonación de Organismos/métodos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Embrión de Mamíferos/ultraestructura , Fertilización In Vitro , Fibroblastos , Heterocromatina/clasificación , Heterocromatina/ultraestructura , Histonas/metabolismo , Cinética , Microscopía Confocal , Técnicas de Transferencia Nuclear , Oocitos
20.
Nat Cell Biol ; 22(7): 767-778, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601371

RESUMEN

Following fertilization in mammals, the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodelling of constitutive heterochromatin, although the functional relevance of this is unknown. Here, we show that heterochromatin establishment relies on the stepwise expression and regulated activity of SUV39H enzymes. Enforcing precocious acquisition of constitutive heterochromatin results in compromised development and epigenetic reprogramming, which demonstrates that heterochromatin remodelling is essential for natural reprogramming at fertilization. We find that de novo H3K9 trimethylation (H3K9me3) in the paternal pronucleus after fertilization is catalysed by SUV39H2 and that pericentromeric RNAs inhibit SUV39H2 activity and reduce H3K9me3. De novo H3K9me3 is initially non-repressive for gene expression, but instead bookmarks promoters for compaction. Overall, we uncover the functional importance for the restricted transmission of constitutive heterochromatin during reprogramming and a non-repressive role for H3K9me3.


Asunto(s)
Centrómero/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Heterocromatina/metabolismo , Histonas/metabolismo , ARN/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigénesis Genética , Femenino , Heterocromatina/genética , Histonas/genética , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA