Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; : e2400952, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011941

RESUMEN

Pickering water-in-water (W/W) emulsions stabilized by biobased colloids are pertinent to engineering biomaterials with hierarchical and confined architectures. In this study, stable W/W emulsions are developed through membranization utilizing biopolymer structures formed by the adsorption of cellulose II nanospheres and a globular protein, bovine serum albumin (BSA), at droplet surfaces. The produced cellulose II nanospheres (NPcat, 63 nm diameter) bearing a soft and highly accessible shell, endow rapid and significant binding (16 mg cm- 2) with BSA. NPcat and BSA formed complexes that spontaneously stabilized liquid droplets, resulting in stable W/W emulsions. It is proposed that such a system is a versatile all-aqueous platform for encapsulation, (bio)catalysis, delivery, and synthetic cell mimetics.

2.
Biomacromolecules ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958474

RESUMEN

The pursuit of renewable and eco-friendly raw materials for biobased materials is a growing field. This study utilized ellagitannin and cellulose microfibrils derived from rambutan peel waste alongside gelatin to develop eco-conscious hydrogels. The cellulose/gelatin hydrogels were formulated in two weight ratios (0.5:1 to 1:1), and the influence of gelatin on the chemical composition and rheology was studied. Composite hydrogels, functionalized with an ellagitannin-rich extract, exhibited a remarkable enhancement of up to 14-fold in compressive strength. The hydrogels also demonstrated antimicrobial properties, reducing the Staphylococcus aureus colony count within 24 h. The hydrogel, derived from rambutan peel waste, is biocompatible and could potentially be explored for biomedical applications such as drug delivery systems, and wound dressings. This suggests that it might offer significant value for sustainable materials science, although specific applications have yet to be tested.

3.
Chem Rev ; 121(22): 14088-14188, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34415732

RESUMEN

This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.


Asunto(s)
Nanofibras , Polímeros , Biopolímeros/química , Celulosa , Nanofibras/química , Seda/química
4.
Cellulose (Lond) ; 30(4): 2353-2365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36624885

RESUMEN

Rapid diagnostic systems are essential in controlling the spread of viral pathogens and efficient patient management. The available technologies for low-cost viral antigen testing have several limitations, including a lack of accuracy and sensitivity. Here, we introduce a platform based on cellulose II nanoparticles (oppositely charged NPan and NPcat) for effective control of surface protein interactions, leading to rapid and sensitive antigen tests. Passivation against non-specific adsorption and augmented immobilization of sensing antibodies is achieved by adjusting the electrostatic charge of the nanoparticles. The interactions affecting the performance of the system are investigated by microgravimetry and confocal imaging. As a proof-of-concept test, SARS-CoV-2 nucleocapsid sensing was carried out by using saliva-wicking by channels that were stencil-printed on paper. We conclude that inkjet-printed NPcat elicits strong optical signals, visible after a few minutes, opening the opportunity for cost-effective and rapid diagnostic. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-022-05038-y.

5.
Small ; 18(13): e2105420, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119202

RESUMEN

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidad , Agua
6.
J Am Chem Soc ; 143(41): 17040-17046, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617737

RESUMEN

Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments. No polymer degradation, cross-linking, nor changes in crystallinity occur under the mild processing conditions, yielding cellulose nanofibrils bearing carboxyl moieties, which can be removed by saponification. The latter offers a significant opportunity in the reconstitution of the chemical and structural interfaces associated with the native states. Consequently, 3D structuring of native elementary cellulose nanofibrils is made possible with the same supramolecular features as the biosynthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

7.
Biomacromolecules ; 22(3): 1027-1052, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33577286

RESUMEN

With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.


Asunto(s)
Algas Marinas , Alginatos , Carragenina , Hidrogeles , Polisacáridos
8.
Small ; 16(50): e2004702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33215868

RESUMEN

Soft cationic core/shell cellulose nanospheres can deform and interpenetrate allowing their self-assembly into densely packed colloidal nanogel layers. Taking advantage of their water-swelling capacity and molecular accessibility, the nanogels are proposed as a new and promising type of coating material to immobilize bioactive molecules on thin films and paper. The specific and nonspecific interactions between the cellulosic nanogel and human immunoglobulin G as well as bovine serum albumin (BSA) are investigated. Confocal microscopy, electroacoustic microgravimetry, and surface plasmon resonance are used to access information about the adsorption behavior and viscoelastic properties of self-assembled nanogels. A significant BSA adsorption capacity on nanogel layers (17 mg m-2 ) is measured, 300% higher compared to typical polymer coatings. This high protein affinity further confirms the promise of the introduced colloidal gel layer, in increasing sensitivity and advancing a new generation of substrates for a variety of applications, including immunoassays, as demonstrated in this work.


Asunto(s)
Celulosa , Nanosferas , Adsorción , Humanos , Inmunoensayo , Albúmina Sérica Bovina , Propiedades de Superficie
9.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153040

RESUMEN

Scaffolds used for bone tissue engineering need to have a variety of features to accommodate bone cells. The scaffold should mimic natural bone, it should have appropriate mechanical strength, support cell differentiation to the osteogenic lineage, and offer adequate porosity to allow vascularization and bone in-growth. In this work, we aim at developing a new process to fabricate such materials by creating a porous composite material made of silk fibroin and cellulose as a suitable scaffold of bone tissue engineering. Silk fibroin and cellulose are both dissolved together in N,N-dimethylacetamide/LiCl and molded to a porous structure using NaCl powder. The hydrogels are prepared by a sequential regeneration process: cellulose is solidified by water vapor treatment, while the remaining silk fibroin in the hydrogel is insolubilized by methanol, which leads to a cellulose framework structure embedded in a silk fibroin matrix. Finally, the hydrogels are soaked in water to dissolve the NaCl for making a porous structure. The cellulose composition results in improving the mechanical properties for the hydrogels in comparison to the silk fibroin control material. The pore size and porosity are estimated at around 350 µm and 70%, respectively. The hydrogels support the differentiation of MC3T3 cells to osteoblasts and are expected to be a good scaffold for bone tissue engineering.


Asunto(s)
Huesos/metabolismo , Celulosa/química , Fibroínas/química , Hidrogeles/química , Osteoblastos/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Huesos/citología , Línea Celular , Ratones , Osteoblastos/citología , Porosidad
10.
Biomacromolecules ; 20(8): 3142-3146, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31264848

RESUMEN

Bacterial cellulose (BC) has a broad range of applications in biomedical fields and cosmetics. Applied as wound dressing, BC tends to stick to the sore especially upon drying, and hydrophobization improves its performance in this regard. This article reports a facile and rapid yet a highly efficient approach for BC hydrophobization through direct polymerization of ethyl 2-cyanoacrylate on the BC fibers. The modified material preserves the favorable porous structure of the matrix material while displaying significantly higher hydrophobicity and significantly decreased stickiness to the wound. The BC surface can be modified in 15 min. Overall, this can be considered a ready-to-apply approach for the fabrication of BC wound dressings with enhanced performance. The modification was demonstrated to improve the material's biocompatibility and to introduce antimicrobial activity (immortalized human fibroblast assay).


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles/química , Celulosa/química , Cianoacrilatos/química , Fibroblastos/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Antiinfecciosos/química , Vendajes , Fibroblastos/citología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion
11.
Molecules ; 23(6)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895798

RESUMEN

The effective and straight-forward modification of nanostructured celluloses under aqueous conditions or as "never-dried" materials is challenging. We report a silanization protocol in water using catalytic amounts of hydrogen chloride and then sodium hydroxide in a two-step protocol. The acidic step hydrolyzes the alkoxysilane to obtain water-soluble silanols and the subsequent addition of catalytic amounts of NaOH induces a covalent reaction between cellulose surficial hydroxyl groups and the respective silanols. The developed protocol enables the incorporation of vinyl, thiol, and azido groups onto cellulose fibers and cellulose nanofibrils. In contrast to conventional methods, no curing or solvent-exchange is necessary, thereby the functionalized celluloses remain never-dried, and no agglomeration or hornification occurs in the process. The successful modification was proven by solid state NMR, ATR-IR, and EDX spectroscopy. In addition, the covalent nature of this bonding was shown by gel permeation chromatography of polyethylene glycol grafted nanofibrils. By varying the amount of silane agents or the reaction time, the silane loading could be tuned up to an amount of 1.2 mmol/g. Multifunctional materials were obtained either by prior carboxymethylation and subsequent silanization; or by simultaneously incorporating both vinyl and azido groups. The protocol reported here is an easy, general, and straight-forward avenue for introduction of anchor groups onto the surface of never-dried celluloses, ready for click chemistry post-modification, to obtain multifunctional cellulose substrates for high-value applications.


Asunto(s)
Celulosa/química , Ácido Clorhídrico/química , Silanos/síntesis química , Hidróxido de Sodio/química , Catálisis , Química Clic , Nanofibras/química , Silanos/química , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie , Compuestos de Vinilo/síntesis química , Compuestos de Vinilo/química , Agua/química
12.
Int J Biol Macromol ; 259(Pt 2): 128857, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143063

RESUMEN

This study assesses the viability of an accelerated solvent extraction technique employing environmentally friendly solvents to extract ellagitannins while producing cellulose-rich fibers from rambutan peel. Two sequential extraction protocols were investigated: 1) water followed by acetone/water (4:1, v:v), and 2) acetone followed by acetone/water (4:1, v:v), both performed at 50 °C. The first protocol had a higher extraction yield of 51 %, and the obtained extractives featured a higher total phenolic (531.4 ± 22.0 mg-GAE/g) and flavonoid (487.3 ± 16.9 mg-QE/g) than the second protocol (495.4 ± 32.8 mg-GAE/g and 310.6 ± 31.4 mg-QE/g, respectively). The remaining extractive-free fibers were processed by bleaching using either 2 wt% sodium hydroxide with 3 wt% hydrogen peroxide or 4-5 wt% peracetic acid. Considering bleaching efficiency, yield, and process sustainability, the single bleaching treatment with 5 wt% of peracetic acid was selected as the most promising approach to yield cellulose-rich fibers. The samples were analyzed by methanolysis to determine the amount and type of poly- and oligosaccharides and studied by 13C solid-state nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The products obtained from the peels demonstrate significant potential for use in various sectors, including food, nutraceuticals, cosmetics, and paper production.


Asunto(s)
Celulosa , Sapindaceae , Celulosa/análisis , Acetona , Taninos Hidrolizables , Sapindaceae/química , Ácido Peracético , Solventes/química , Frutas/química , Agua/análisis
13.
Adv Mater ; 35(12): e2209685, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734159

RESUMEN

Metal-phenolic network (MPN) foams are prepared using colloidal suspensions of tannin-containing cellulose nanofibers (CNFs) that are ice-templated and thawed in ethanolic media in the presence of metal nitrates. The MPN facilitates the formation of solid foams by air drying, given the strength and self-supporting nature of the obtained tannin-cellulose nanohybrid structures. The porous characteristics and (dry and wet) compression strength of the foams are rationalized by the development of secondary, cohesive metal-phenolic layers combined with a hydrogen bonding network involving the CNF. The shrinkage of the MPN foams is as low as 6% for samples prepared with 2.5-10% tannic acid (or condensed tannin at 2.5%) with respect to CNF content. The strength of the MPN foams reaches a maximum at 10% tannic acid (using Fe(III) ions), equivalent to a compressive strength 70% higher than that produced with tannin-free CNF foams. Overall, a straightforward framework is introduced to synthesize MPN foams whose physical and mechanical properties are tailored by the presence of tannins as well as the metal ion species that enable the metal-phenolic networking. Depending on the metal ion, the foams are amenable to modification according to the desired application.

14.
Carbohydr Polym ; 319: 121145, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567703

RESUMEN

Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8-2.0 wt%), and polyethylene glycol dithiol (3.0-7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients - ranging from 3 to 6 kPa in indentation strength - and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.

15.
ACS Appl Bio Mater ; 6(12): 5596-5608, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38050684

RESUMEN

Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Colágeno/química , Celulosa/farmacología , Celulosa/química , Impresión Tridimensional
16.
ACS Sustain Chem Eng ; 10(32): 10570-10578, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35991757

RESUMEN

The majority of reagents currently used in mineral flotation processes are fossil-based and potentially harmful to the environment. Therefore, it is necessary to find environmentally-friendly alternatives to reduce the impact of mineral processing activities. Chitin nanocrystals are a renewable resource that, due to the natural presence of amino groups on its surface, represents a promising collector for various minerals of economic relevance. This study examines the one-pot functionalization of chitin nanocrystals with aldehyde structures to obtain hydrophobized colloids suitable for mineral flotation. The chemical properties of these nano-colloids were investigated by nuclear magnetic resonance spectroscopy, their colloidal behavior and structure by electrophoretic light scattering and atomic force microscopy, and their wettability through water contact angle measurements. The functionalized N-alkylated chitin nanocrystals possessed a hydrophobic character, were able to dress mineral particles and featured a performance in the flotation of malachite similar to commercial collectors, which proves the high potential of chitin nanocrystals in this field of application.

17.
J Mater Chem A Mater ; 10(44): 23413-23432, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36438677

RESUMEN

Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.

18.
ACS Omega ; 7(44): 39975-39984, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385815

RESUMEN

Agroindustrial wastes are renewable sources and the most promising sustainable alternative to lignocellulosic biomass for cellulose production. This study assessed the electrothermal pretreatment of rambutan peel (RP) for producing cellulose fibers. The pretreatment was carried out by Ohmic heating at a solid-to-liquid ratio of 1:10 (w/v) in a water/ethanol (1:1, v/v) mixture as the electrical transmission medium at 60 ± 1 °C for different holding times (15, 30, and 60 min). Ohmic heating did not significantly influence the total fiber yield for the various holding times. However, the compositions of the samples in terms of extractives, lignin, hemicellulose, and α-cellulose content were significantly influenced. In addition, the electrothermal pretreatment method reduced the bleaching time of RP by 25%. The pretreated fibers were thermally stable up to 240 °C. Ohmic heating pretreatment times of 15 and 30 min were found most promising, reducing the required bleaching chemicals and increasing the α-cellulose yield. The pretreated bleached cellulose fibers had similar properties to nontreated bleached fibers and could be efficiently processed into stable gels of strong shear-thinning behavior with potential application as rheology modifiers in food products. Our results demonstrate that rambutan peel could serve as a promising sustainable alternative to woody biomass for cellulose production. Ohmic heating meets the requirements for industrial applications as it is eco-friendly, improves the efficiency and energy consumption in fiber processing, and could as well be included in the processing of similar food wastes.

19.
Nanomaterials (Basel) ; 12(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335708

RESUMEN

Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.

20.
ACS Sustain Chem Eng ; 10(31): 10303-10310, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35966391

RESUMEN

Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are ca. 30% stronger and ca. 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30-50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical-mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA