Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 541(7637): 359-364, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28068672

RESUMEN

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Asunto(s)
Genoma Humano/genética , Genómica , Mutación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Cromotripsis , Variaciones en el Número de Copia de ADN , Metilación de ADN , Exoma/genética , Humanos , Masculino , Metástasis de la Neoplasia/genética , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Recurrencia
2.
Nat Methods ; 11(10): 1071-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25173705

RESUMEN

As high-throughput sequencing continues to increase in speed and throughput, routine clinical and industrial application draws closer. These 'production' settings will require enhanced quality monitoring and quality control to optimize output and reduce costs. We developed SeqControl, a framework for predicting sequencing quality and coverage using a set of 15 metrics describing overall coverage, coverage distribution, basewise coverage and basewise quality. Using whole-genome sequences of 27 prostate cancers and 26 normal references, we derived multivariate models that predict sequencing quality and depth. SeqControl robustly predicted how much sequencing was required to reach a given coverage depth (area under the curve (AUC) = 0.993), accurately classified clinically relevant formalin-fixed, paraffin-embedded samples, and made predictions from as little as one-eighth of a sequencing lane (AUC = 0.967). These techniques can be immediately incorporated into existing sequencing pipelines to monitor data quality in real time. SeqControl is available at http://labs.oicr.on.ca/Boutros-lab/software/SeqControl/.


Asunto(s)
Biología Computacional/métodos , Neoplasias de la Próstata/metabolismo , Análisis de Secuencia de ADN/métodos , Algoritmos , Área Bajo la Curva , Genoma , Genotipo , Humanos , Modelos Lineales , Masculino , Análisis Multivariante , Control de Calidad , Programas Informáticos
3.
Nat Commun ; 6: 10001, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26647970

RESUMEN

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Linfoide/genética , Meduloblastoma/genética , Mutación , Genoma Humano , Humanos
4.
Nat Genet ; 47(7): 736-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26005866

RESUMEN

Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.


Asunto(s)
Neoplasias de la Próstata/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Heterogeneidad Genética , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Mutación Puntual , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA