Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 608(7922): 390-396, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922513

RESUMEN

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Asunto(s)
Antibacterianos , Bacterias , Membrana Celular , Depsipéptidos , Viabilidad Microbiana , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Difosfatos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Pirrolidinas/química , Azúcares/química
2.
Nucleic Acids Res ; 50(7): 4083-4099, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357505

RESUMEN

Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.


Asunto(s)
Regiones no Traducidas 3' , Conformación de Ácido Nucleico , Espectroscopía de Resonancia Magnética , ARN Mensajero/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Angew Chem Int Ed Engl ; 62(19): e202219314, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738230

RESUMEN

Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein-protein interactions. We studied aromatic residues in the two structurally homologous cross-ß amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of "breathing motions" over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-ß architecture.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Resonancia Magnética Nuclear Biomolecular/métodos , Amiloide/química , Espectroscopía de Resonancia Magnética , Conformación Proteica , Péptidos beta-Amiloides/metabolismo
4.
Curr Opin Struct Biol ; 82: 102660, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536064

RESUMEN

Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) is establishing itself as a powerful method for the characterization of protein dynamics at the atomic scale. We discuss here how R1ρ MAS relaxation dispersion NMR can explore microsecond-to-millisecond motions. Progress in instrumentation, isotope labeling, and pulse sequence design has paved the way for quantitative analyses of even rare structural fluctuations. In addition to isotropic chemical-shift fluctuations exploited in solution-state NMR relaxation dispersion experiments, MAS NMR has a wider arsenal of observables, allowing to see motions even if the exchanging states do not differ in their chemical shifts. We demonstrate the potential of the technique for probing motions in challenging large enzymes, membrane proteins, and protein assemblies.


Asunto(s)
Proteínas de la Membrana , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética , Movimiento (Física)
5.
J Struct Biol X ; 7: 100079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36578472

RESUMEN

Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA