Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(25): 14021-14031, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522878

RESUMEN

We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm2, the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction.

2.
Macromol Rapid Commun ; 43(20): e2200335, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35726135

RESUMEN

Solid polymer electrolytes (SPEs) have attracted considerable attention for high energy solid-state lithium metal batteries (LMBs). In this work, potentially ecofriendly, solid-state poly(ε-caprolactone) (PCL)-based star polymer electrolytes with cross-linked structures (xBt-PCL) are introduced that robustly cycle against LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) composite cathodes, affording long-term stability even at higher current densities. Their superior features allow for sufficient suppression of dendritic lithium deposits, as monitored by 7 Li solid-state NMR. Advantageous electrolyte|electrode interfacial properties derived from cathode impregnation with 1.5 wt% PCL enable decent cell performance until up to 500 cycles at rates of 1C (60 °C), illustrating the high potential of PCL-based SPEs for application in high-voltage LMBs.


Asunto(s)
Litio , Polímeros , Electrólitos
3.
Langmuir ; 37(17): 5339-5347, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885307

RESUMEN

The self-assembly of surfactants in aqueous solution can be modulated by the presence of additives including urea, which is a well-known protein denaturant and also present in physiological fluids and agricultural runoff. This study addresses the effects of urea on the structure of micelles formed in water by the fluorinated surfactant perfluoro-n-octanoic acid ammonium salt (PFOA). Analysis of small-angle neutron scattering (SANS) experiments and atomistic molecular dynamics (MD) simulations provide consensus strong evidence for the direct mechanism of urea action on micellization: urea helps solvate the hydrophobic micelle core by localizing at the surface of the core in the place of some water molecules. Consequently, urea decreases electrostatic interactions at the micelle shell, changes the micelle shape from prolate ellipsoid to sphere, and decreases the number of surfactant molecules associating in a micelle. These findings inform the interactions and behavior of surface active per- and polyfluoroalkyl substances (PFAS) released in the aqueous environment and biota.

4.
Chem Rev ; 119(13): 7940-7995, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31141351

RESUMEN

Many applications in chemistry, biology, and energy storage/conversion research rely on molecular simulations to provide fundamental insight into structural and transport properties of materials with high ionic concentrations. Whether the system is comprised entirely of ions, like ionic liquids, or is a mixture of a polar solvent with a salt, e.g., liquid electrolytes for battery applications, the presence of ions in these materials results in strong local electric fields polarizing solvent molecules and large ions. To predict properties of such systems from molecular simulations often requires either explicit or mean-field inclusion of the influence of polarization on electrostatic interactions. In this manuscript, we review the pros and cons of different treatments of polarization ranging from the mean-field approaches to the most popular explicit polarization models in molecular dynamics simulations of ionic materials. For each method, we discuss their advantages and disadvantages and emphasize key assumptions as well as their adjustable parameters. Strategies for the development of polarizable models are presented with a specific focus on extracting atomic polarizabilities. Finally, we compare simulations using polarizable and nonpolarizable models for several classes of ionic systems, discussing the underlying physics that each approach includes or ignores, implications for implementation and computational efficiency, and the accuracy of properties predicted by these methods compared to experiments.


Asunto(s)
Electrólitos/química , Líquidos Iónicos/química , Aniones/química , Cationes/química , Simulación de Dinámica Molecular
5.
Phys Chem Chem Phys ; 23(16): 10029-10039, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33870993

RESUMEN

Surface active per- and polyfluoroalkyl substances (PFAS) released in the environment generate great concern in the US and worldwide. The sequestration of PFAS amphiphiles from aqueous media can be limited by their strong tendency to form micelles that plug the pores in the adsorbent material, rendering most of the active surface inaccessible. A joint experimental and simulation approach has been used to investigate the structure of perfluorooctanoate ammonium (PFOA) micelles in aqueous solutions, focusing on the understanding of ethanol addition on PFOA micelle formation and structure. Structurally compact and slightly ellipsoidal in shape, PFOA micelles in pure water become more diffuse with increasing ethanol content, and break into smaller PFOA clusters in aqueous solutions with high ethanol concentration. A transition from a co-surfactant to a co-solvent behavior with the increase of ethanol concentration has been observed by both experiments and simulations, while the latter also provide insight on how to achieve co-solvent conditions with other additives. An improved understanding of how to modulate PFAS surfactant self-assembly in water can inform the fate and transport of PFAS in the environment and the PFAS sequestration from aqueous media.

6.
J Chem Phys ; 150(21): 214702, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31176353

RESUMEN

Molecular dynamics simulations of reactions in Al/Ni layered systems have been carried out under isothermal conditions for a wide range of temperatures and several system sizes. An embedded atom method potential, known to reasonably reproduce the phase behavior of Al/Ni, was employed. Simulations revealed reaction mechanisms involving an initial fast process and much slower more complex longer-time reactions. The initial reaction process consists of diffusion of Ni from the pure solid Ni phase into the molten Al phase, resulting in the formation of an Al-rich Al/Ni liquid. The initial reaction ends when the Al/Ni liquid becomes saturated in Ni and solid Al/Ni phases begin to form at the interfaces between the pure solid Ni phase and the Al/Ni liquid. The growth of these solid phases is intrinsically slow compared to the formation of the liquid and is further slowed by the need for Ni to diffuse through the growing interfacial Al/Ni solid phases. Analysis of the initial Al/Ni liquid forming process indicates Fickian behavior with the Ni diffusion coefficient exhibiting Arrhenius temperature dependence. The longer-time slow reaction process(es) resulting in the growth of Al/Ni solid phases do not lend themselves to detailed numerical analysis because of the complex dependence of the Ni transport on the detailed nature of the interfacial layers.

7.
Phys Chem Chem Phys ; 20(46): 29174-29183, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30426990

RESUMEN

An experimental analysis based on very-low-frequency (VLF) impedance spectra and the Onsager reciprocal relations is combined with advanced analysis of dynamic correlations in atomistic molecular simulations in order to investigate Li+ transport in solvate ionic liquids (SILs). SILs comprised of an equimolar mixture of a lithium salt with glyme molecules are considered as a promising class of highly concentrated electrolytes for future Li-ion batteries. Both simulations and experiments on a prototypical Li-bis(trifluoromethanesulfonyl)imide (TFSI) salt/tetraglyme mixture show that while the ionic conductivity and the Li+ transport number are quite high, the Li+ transference number under 'anion-blocking conditions' is extremely low, making these electrolytes rather inefficient for battery applications. The contribution of cation-anion correlation to the total ionic conductivity has been extracted from both studies, revealing a highly positive contribution due to strongly anti-correlated cation-anion motions. Such cation-anion anti-correlations have also been found in standard ionic liquids and are a consequence of the constraint of momentum conservation. The molecular origin of low Li+ transference number and the influence of anti-correlated motions on Li+ transport efficiency have been investigated as a function of solvent composition. We demonstrate that Li+ transference number can be increased either by reducing the residence time between Li+ and solvent molecules or by adding excessive solvent molecules that are not complexing with Li+.

8.
Phys Chem Chem Phys ; 20(29): 19350-19362, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29993087

RESUMEN

Extensive atomistic molecular dynamics (MD) simulations employing a polarizable force field have been conducted to study hydrated anion exchange membranes comprised of a poly(p-phenylene oxide) (PPO) homopolymer functionalized with quaternary ammonium cationic side groups and hydroxide anions. Representative membranes with different cationic structures have been investigated to study correlations between polymer architecture, morphology and transport properties of hydrated membranes. Specifically, hydrated polymers with five different quaternary ammonium cationic groups (R1: -CH3, R2: -C2H5, R3: -C3H7, R4: -C6H13 and R5: -C4H8OCH3) and degree of functionalization of 50% were investigated at three hydration levels (λ = Nwater/Ncation = 5, 10 and 17). Effects of the polymer structure on the distribution of water-rich domains and dynamic relaxations were systematically investigated to uncover the complex interplay between the degree of hydrophobicity/hydrophilicity of the cationic groups, morphology, connectivity of water domains, and the hydroxide transport mechanisms. Structural and dynamical analysis indicates that the bottlenecks, formed between the water-rich domains, create a substantial free energy barrier for hydroxide transport associated with the partial loss of anion hydration structure. The energy penalty associated with the loss of the hydration structure hinders the vehicular transport of the hydroxide anion. The optimal structure of functionalized homopolymer chains should be sufficiently hydrophobic to create nanophase segregation and form an interconnected network of water channels with a minimal amount of narrow bottlenecks that inhibit the vehicular motion of hydrated anions. We demonstrate that utilization of asymmetrically modified cationic groups is a promising route to achieve the desired water channel morphology at low hydration levels.

9.
J Chem Phys ; 148(19): 193833, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307244

RESUMEN

Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

10.
Langmuir ; 33(3): 744-754, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28036187

RESUMEN

We report computer simulation of the self-assembly of alkylthiols on the surface of liquid mercury. Here we focus mainly on the alkylthiol behavior on mercury as a function of the surfactant surface coverage, which we study by means of large-scale molecular dynamics simulations of the equilibrium structure at room temperature. The majority of the presented results are obtained for octa- and dodecanethiol surfactants. This topic is particularly interesting because the properties of the alkylthiol self-assembled monolayers on liquid mercury are relevant for practical applications (e.g., in organic electronics) and can be controlled by mechanically manipulating the monolayer, i.e., by changing its structure. Our computer simulation results shed additional light on the alkylthiol self-assembly on liquid mercury by revealing the coexistence of a dense agglomerated laying-down alkylthiols with a very dilute 2D vapor on mercury surface rather than a single vapor phase in the low surface coverage regime. In the regimes of the high surface coverage we observe the coexistence of the laying-down liquid phase and crystalline phases with alkylthiols standing tilted at a sharp angle to the surface normal, which agrees with the phase behavior previously seen in X-ray and tensiometry experiments. We also discuss the influence of finite-size effects, which one inevitably encounters in molecular simulations. Our findings agree well with the general predictions of the condensation/evaporation theory for finite systems. The temperature dependence of the stability of the crystalline alkylthiol phases and details of the surfactant chemical binding to the surface are discussed. The equilibrium structure of the crystalline phase is investigated in detail for the alkylthiols of various tail lengths.

11.
Langmuir ; 32(16): 4004-15, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27027147

RESUMEN

Extensive atomistic molecular dynamics simulations have been employed to study the structure and molecular orientational relaxation of azobenzene-based monolayers grafted to a solid substrate. Systems with surface coverage of 0.6 nm(2)/molecule were investigated over a wide temperature range ranging from 298 K, where the mesogens show local ordering and the monolayer dynamics was found to be glassy, up to 700 K, where the azobenzene groups have a nearly isotropic orientational distribution, with a subnanosecond characteristic orientational relaxation time scale. Biased simulations that model single-molecule thermal excitation and conformational isomerization have been conducted to obtain insight into the mechanisms for photoinduced athermal fluidization and monolayer reorganization observed experimentally in this system. Our simulations clearly indicate that trans-cis conformational isomerization transitions of azobenzene units can lead to reorientation of mesogens and to the formation of a monolayer with strong macroscopic in-plane nematic order. While local heating created by excitation process can facilitate this process, thermal excitation alone is not sufficient to induce ordering in the monolayer. Instead, the work done by a molecule undergoing cis-trans isomerization on the cage of neighboring molecules is the key mechanism for photofluidization and orientational ordering in dMR monolayers exposed to linearly polarized light leading to relaxation dynamics that can be described in terms of higher effective temperature. The obtained simulation results are discussed in light of recent experimental data reported for these systems.

12.
Phys Chem Chem Phys ; 18(1): 382-92, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26617256

RESUMEN

The dynamical and structural properties in two ionic liquid electrolytes (ILEs) based on 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)-imide ([emim][TFSI]) and N-methyl-N-propylpyrrolidinium bis-(trifluoromethanesulfonyl)imide([pyr13][TFSI]) were compared as a function of lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salt concentrations using atomistic molecular dynamics (MD) simulations. The many-body polarizable APPLE&P force field has been utilized. The influence of anion polarization on the structure of the first coordination shell of Li(+) was examined. In particular, the reduction of the oxygen of the TFSI anion (OTFSI) polarizability from 1.36 Å(3) to 1.00 Å(3) resulted in an increased fraction of the TFSI anion bidentate coordination to the Li(+). While the overall dynamics in [pyr13][TFSI]-based ILEs was slower than in [emim][TFSI]-based ILEs, the exchange of TFSI anions in and out of the first coordination shell of Li(+) was found to be faster in pyr13-based systems. The Li(+) ion transference number is higher for these systems as well. These trends can be related to the difference in interaction of TFSI with the IL cation which is stronger for pyr13 than for emim.

13.
J Phys Chem A ; 120(41): 8011-8023, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27657880

RESUMEN

The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

14.
Proc Natl Acad Sci U S A ; 110(40): 15931-6, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24006362

RESUMEN

Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ~ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ~ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θ(TB) ~ 25° and the full pitch of the director helix to be p(TB) ~ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend.


Asunto(s)
Cristales Líquidos/química , Modelos Moleculares , Conformación Molecular , Nanoestructuras/química , Dimerización , Técnica de Fractura por Congelación , Microscopía Electrónica de Transmisión , Estructura Molecular
15.
Nanotechnology ; 26(46): 464001, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26511198

RESUMEN

The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL)capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 µF cm(−2) from that of a metallic surface.Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

16.
Phys Chem Chem Phys ; 16(11): 5174-82, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24481408

RESUMEN

In this work using molecular dynamics simulations we examine the temperature dependence of the differential capacitance of room temperature ionic liquid electrolytes near electrified surfaces. For electrodes with atomically flat surfaces our simulations show very weak temperature dependence of the differential capacitance (DC) with a slight decrease of DC with increasing temperature. For atomically corrugated surfaces where the ion dimensions are comparable to the size of the surface corrugation patterns, the influence of temperature on DC is much more pronounced. At low temperatures the DC dependence on electrode potential shows large variations with well-defined maxima and minima. However, with increasing temperature these features are significantly flattened. Also for these corrugated surfaces an abnormal positive slope of DC vs. temperature is observed in the narrow range of relatively low voltages. Analysis of changes in the electric double layer structure as a function of temperature allowed us to propose a new mechanism explaining the observed trends in capacitance as a function of temperature and surface topography. The obtained simulation results are discussed in light of available experimental data and help to discriminate between contradictory experimentally observed trends in DC temperature dependence reported for ionic liquid based electrolytes in the literature.

17.
Phys Chem Chem Phys ; 15(34): 14234-47, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23873305

RESUMEN

A molecular dynamics simulation study of electric double layer (EDL) structure and differential capacitance (DC) of two 1-butyl-3-methylimidazolium (BMIM)-based room temperature ionic liquids, i.e. [BMIM][BF4] and [BMIM][PF6], has been conducted on basal and prismatic graphite as well as (001) and (011) gold electrode surfaces. The influence of the electrode surface and electrolyte structure on electrode capacitance and EDL structure are discussed. For a given electrode surface both the [BMIM][BF4] and [BMIM][PF6] electrolytes generate very similar DC and EDL structures. The DC for these ionic liquids in contact with atomically flat surfaces (i.e. basal graphite and (001)Au) shows very small variations within the electrolyte chemical stability potential window and fluctuates around an average value of ∼5 µF cm(-2). On atomically more corrugated surfaces (i.e., Au(011) and prismatic graphite) the DC shows more variation with electrode potential and depends on the correspondence between dimensions of the surface roughness and electrolyte ion sizes. The trends and dependencies obtained for DC are used to discriminate between mutually contradictory experimental data reported in the literature for related systems.

18.
J Phys Chem A ; 117(38): 9216-23, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23985064

RESUMEN

In this study we have examined the combustion dynamics of 1,5-dinitrobiuret (DNB) and nitric acid using reactive molecular dynamics simulations. Simulations were performed using the ReaxFF force field with parameters that were fitted against quantum mechanical calculations on model compounds/clusters relevant for this particular chemical system. Several different compositions were investigated, at densities of 0.5 and 1.0 g/mL, to examine the reaction kinetics in a dense vapor and liquid phase of these mixtures. Our simulations show that at certain compositions of the mixture reaction kinetics result in a very sharp release of thermal energy, which we associate with spontaneous ignition or hypergolicity. Analysis of key reaction mechanisms responsible for this process is discussed.

19.
J Chem Phys ; 139(10): 104503, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-24050355

RESUMEN

Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3(-)] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P(®) potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3(-)] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

20.
J Phys Chem A ; 116(11): 2978-85, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22352952

RESUMEN

We have conducted quantum chemistry calculations and gas- and solution-phase reactive molecular dynamics simulation studies of reactions involving the ethylene carbonate (EC) radical anion EC(-) using the reactive force field ReaxFF. Our studies reveal that the substantial barrier for transition from the closed (cyclic) form, denoted c-EC(-), of the radical anion to the linear (open) form, denoted o-EC(-), results in a relatively long lifetime of the c-EC(-) allowing this compound to react with other singly reduced alkyl carbonates. Using ReaxFF, we systematically investigate the fate of both c-EC(-) and o-EC(-) in the gas phase and EC solution. In the gas phase and EC solutions with a relatively low concentration of Li(+)/x-EC(-) (where x = o or c), radical termination reactions between radical pairs to form either dilithium butylene dicarbonate (CH(2)CH(2)OCO(2)Li)(2) (by reacting two Li(+)/o-EC(-)) or ester-carbonate compound (by reacting Li(+)/o-EC(-) with Li(+)/c-EC(-)) are observed. At higher concentrations of Li(+)/x-EC(-) in solution, we observe the formation of diradicals which subsequently lead to formation of longer alkyl carbonates oligomers through reaction with other radicals or, in some cases, formation of (CH(2)OCO(2)Li)(2) through elimination of C(2)H(4). We conclude that the local ionic concentration is important in determining the fate of x-EC(-) and that the reaction of c-EC(-) with o-EC(-) may compete with the formation of various alkyl carbonates from o-EC(-)/o-EC(-) reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA