Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37498755

RESUMEN

We propose that spaceborne polarimetric imagers can be calibrated, or self-calibrated using zodiacal light (ZL). ZL is created by a cloud of interplanetary dust particles. It has a significant degree of polarization in a wide field of view. From space, ZL is unaffected by terrestrial disturbances. ZL is insensitive to the camera location, so it is suited for simultaneous cross-calibration of satellite constellations. ZL changes on a scale of months, thus being a quasi-constant target in realistic calibration sessions. We derive a forward model for polarimetric image formation. Based on it, we formulate an inverse problem for polarimetric calibration and self-calibration, as well as an algorithm for the solution. The methods here are demonstrated in simulations. Towards these simulations, we render polarized images of the sky, including ZL from space, polarimetric disturbances, and imaging noise.

2.
Astrophys J Lett ; 864(2)2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32021683

RESUMEN

Among a number of active galactic nuclei (AGNs) that drive ionized outflows in X-rays, a low-redshift (z = 0.184) quasar, PDS 456, is long known to exhibit one of the exemplary ultra-fast outflows (UFOs). However, the physical process of acceleration mechanism is yet to be definitively constrained. In this work, we model the variations of the Fe K UFO properties in PDS 456 over many epochs in X-ray observations in the context of magnetohydrodynamic (MHD) accretion-disk winds employed in our earlier studies of similar X-ray absorbers. We applied the model to the 2013/2014 XMM-Newton/NuSTAR spectra to determine the UFO's condition; namely, velocity, ionization parameter, column density and equivalent width (EW). Under some provisions on the dependence of X-ray luminosity on the accretion rate applicable to near-Eddington state, our photoionization calculations, coupled to a 2.5-dimensional MHD-driven wind model, can further reproduce the observed correlations of the UFO velocity and the anti-correlation of its EW with X-ray strength of PDS 456. This work demonstrates that UFOs, even without radiative pressure, can be driven as an extreme case purely by magnetic interaction while also producing the observed spectrum and correlations.

3.
Nat Astron ; 1(4)2017.
Artículo en Inglés | MEDLINE | ID: mdl-32851195

RESUMEN

Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra1. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic2 (~ 300 km/sec) to sub-relativistic3 (~ 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma2,4. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes5,6, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims)7 and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

4.
Philos Trans A Math Phys Eng Sci ; 360(1798): 1923-33, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12804237

RESUMEN

We provide a qualitative review of key X-ray spectral diagnostics of astrophysical plasmas. We begin with a brief discussion of the two major types of equilibria, collisional ionization and photoionization, and then consider the behaviour of hydrogen-like, helium-like, iron L-shell and iron K-shell transitions for these separate cases. Where possible, we discuss explicit examples using high-resolution spectra acquired by the grating instruments on the Chandra and XMM-Newton observatories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA