Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 53(41): 6539-49, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25238136

RESUMEN

Pentachlorophenol (PCP) hydroxylase, the first enzyme in the pathway for degradation of PCP in Sphingobium chlorophenolicum, is an unusually slow flavin-dependent monooxygenase (k(cat) = 0.02 s⁻¹) that converts PCP to a highly reactive product, tetrachlorobenzoquinone (TCBQ). Using stopped-flow spectroscopy, we have shown that the steps up to and including formation of TCBQ are rapid (5-30 s⁻¹). Before products can be released from the active site, the strongly oxidizing TCBQ abstracts an electron from a donor at the active site, possibly a cysteine residue, resulting in an off-pathway diradical state that only slowly reverts to an intermediate capable of completing the catalytic cycle. TCBQ reductase, the second enzyme in the PCP degradation pathway, rescues this nonproductive complex via two fast sequential one-electron transfers. These studies demonstrate how adoption of an ancestral catalytic strategy for conversion of a substrate with different steric and electronic properties can lead to subtle yet (literally) radical changes in enzymatic reaction mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Benzoquinonas/metabolismo , Contaminantes Ambientales/metabolismo , Hidrocarburos Clorados/metabolismo , Hidroquinonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pentaclorofenol/metabolismo , Quinona Reductasas/metabolismo , Sphingomonadaceae/enzimología , Proteínas Bacterianas/química , Benzoquinonas/química , Biocatálisis , Biotransformación , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Contaminantes Ambientales/química , Hidrocarburos Clorados/química , Hidroquinonas/química , Cinética , Oxigenasas de Función Mixta/química , NADP/metabolismo , Oxidación-Reducción , Pentaclorofenol/química , Estabilidad Proteica , Quinona Reductasas/química
2.
Biochemistry ; 51(18): 3848-60, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22482720

RESUMEN

Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The k(cat) for PCP (0.024 s(-1)) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure-activity studies reveal that substrate binding and activity are enhanced by a low pK(a) for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H(2)O(2) in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 to 100% with different substrates. The extent of uncoupling is increased by the presence of bulky substituents at position 3, 4, or 5 and decreased by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with tetrachlorohydroquinone (TCHQ), a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Pentaclorofenol/metabolismo , Biodegradación Ambiental , Catálisis , Peróxido de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Plaguicidas/metabolismo , Sphingomonadaceae/enzimología , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Biochemistry ; 47(10): 3258-65, 2008 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-18275157

RESUMEN

Tetrachlorohydroquinone (TCHQ) dehalogenase is profoundly inhibited by its aromatic substrates, TCHQ and trichlorohydroquinone (TriCHQ). Surprisingly, mutations that change Ile12 to either Ser or Ala give an enzyme that shows no substrate inhibition. We have previously shown that TriCHQ is a noncompetitive inhibitor of the thiol-disulfide exchange reaction between glutathione and ESSG, a covalent adduct between Cys13 and glutathione formed during dehalogenation of the substrate. Substrate inhibition of the thiol-disulfide exchange reaction is less severe in the I12S and I12A mutant enzymes, primarily due to weaker binding of TriCHQ to ESSG. These mutations also result in a decrease in the rate of dehalogenation. Because the rate-limiting step in the I12S and I12A enzymes is dehalogenation, rather than the thiol-disulfide exchange reaction, the relatively modest inhibition of the thiol-disulfide exchange reaction does not affect the overall rate of turnover.


Asunto(s)
Hidrolasas/química , Hidrolasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Disulfuros/química , Disulfuros/metabolismo , Hidrolasas/genética , Hidroquinonas/química , Hidroquinonas/metabolismo , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo
4.
RNA ; 11(5): 674-82, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15811921

RESUMEN

Dicer processes long double-stranded RNA (dsRNA) and pre-microRNAs to generate the functional intermediates (short interfering RNAs and microRNAs) of the RNA interference pathway. Here we identify features of RNA structure that affect Dicer specificity and efficiency. The data presented show that various attributes of the 3' end structure, including overhang length and sequence composition, play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). We also demonstrate that siRNA end structure affects overall silencing functionality. Awareness of these new features of Dicer cleavage specificity as it is related to siRNA functionality provides a more detailed understanding of the RNAi mechanism and can shape the development of hairpins with enhanced functionality.


Asunto(s)
Endorribonucleasas/metabolismo , Conformación de Ácido Nucleico , ARN Helicasas/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Secuencia de Bases , Línea Celular , ARN Helicasas DEAD-box , Humanos , Datos de Secuencia Molecular , ARN Bicatenario/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA