Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(18): 182501, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763910

RESUMEN

Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this Letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive ω electroproduction off the proton, ep→e^{'}pω, at central Q^{2} values of 1.60, 2.45 GeV^{2}, at W=2.21 GeV. The results of our pioneering -u≈-u_{min} study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^{2}=2.45 GeV^{2}, the observed dominance of σ_{T} over σ_{L}, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes: universal nonperturbative objects only accessible through backward-angle kinematics.

2.
Phys Rev Lett ; 116(24): 242501, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367385

RESUMEN

The standard model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the ß decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum using two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14 to 782 keV. The spectral shape was consistent with theory, and we determined a branching ratio of 0.00335±0.00005[stat]±0.00015[syst]. A second detector array of large area avalanche photodiodes directly detected photons from 0.4 to 14 keV. For this array, the spectral shape was consistent with theory, and the branching ratio was determined to be 0.00582±0.00023[stat]±0.00062[syst]. We report the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies.

3.
Phys Rev Lett ; 112(18): 182501, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856691

RESUMEN

The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π(±) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV(2) at W=1.95 GeV, and Q(2)=2.45 GeV(2) at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on RL and RT, and compare them with theoretical calculations. Results for the separated ratio RL indicate dominance of the pion-pole diagram at low -t, while results for RT are consistent with a transition between pion knockout and quark knockout mechanisms.

4.
Phys Rev Lett ; 108(12): 122002, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22540573

RESUMEN

The parity-violating (PV) asymmetry of inclusive π- production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Δ0 resonance. In the context of heavy-baryon chiral perturbation theory, this asymmetry is related to a low-energy constant d(Δ)- that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated d(Δ)- in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from A(γ)-=-5.2 to +5.2 ppm. The measurement performed in this work leads to A(γ)-=-0.36±1.06±0.37±0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to V(ud)/V(us). The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form factors using PV electron scattering.

5.
Phys Rev Lett ; 107(2): 022501, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797598

RESUMEN

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasielastic scattering on the deuteron, at backward angles (lab scattering angle of 108°) for Q² = 0.22 GeV²/c² and 0.63 GeV²/c² at beam energies of 362 and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single-photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (πN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasistatic deuterium approximation, and is also in agreement with theory.

6.
Phys Rev Lett ; 104(1): 012001, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20366359

RESUMEN

We have measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2=0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon and the nucleon axial-vector current. The results indicate strange quark contributions of approximately < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial-vector current at these four-momentum transfers.

7.
Science ; 290(5499): 2117-9, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118140

RESUMEN

The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

8.
J Instrum ; 112016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27226807

RESUMEN

We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

9.
J Res Natl Inst Stand Technol ; 110(4): 421-5, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-27308161

RESUMEN

Beta decay of the neutron into a proton, electron, and electron antineutrino is occasionally accompanied by the emission of a photon. Despite decades of detailed experimental studies of neutron beta-decay, this rare branch of a fundamental weak decay has never been observed. An experiment to study the radiative beta-decay of the neutron is currently being developed for the NG-6 fundamental physics endstation at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The experiment will make use of the existing apparatus for the NIST proton-trap lifetime experiment, which can provide substantial background reduction by providing an electron-proton coincidence trigger. Tests and design of a detector for gamma-rays in the 10 keV to 200 keV range are under development. The need for a large solid-angle gamma-ray detector that can operate in a strong magnetic field and at low temperature has led us to consider scintillating crystals in conjunction with avalanche photodiodes. The motivation and experimental technique will be discussed.

10.
Appl Radiat Isot ; 77: 130-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608597

RESUMEN

The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.


Asunto(s)
Litio/química , Litio/efectos de la radiación , Neutrones , Compuestos Orgánicos/química , Conteo por Cintilación/instrumentación , Análisis Espectral/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Isótopos/química , Isótopos/efectos de la radiación , Dosis de Radiación , Soluciones
11.
Phys Rev Lett ; 99(9): 092301, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17930999

RESUMEN

We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q2=0.15, 0.25 (GeV/c)2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A(n) provides a direct probe of the imaginary component of the 2gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

12.
Phys Rev Lett ; 97(19): 192001, 2006 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17155616

RESUMEN

The 1H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F(pi)) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F(pi) is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative quantum chromodynamics prediction.

13.
Phys Rev Lett ; 95(10): 102001, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16196919

RESUMEN

We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W = 1.23 GeV at Q(2) = 1.0 (GeV/c)(2), obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S(1+)/M(1+)) = -(6.84 +/- 0.15)% and Re (E(1+)/M(1+)) = -(2.91 +/- 0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ll(pi) < or = 1 truncation.

14.
Phys Rev Lett ; 95(9): 092001, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16197209

RESUMEN

We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < or =Q2 < or =1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange-quark contributions to the currents of the proton. The measurements were made at Jefferson Laboratory using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate nonzero, Q2 dependent, strange-quark contributions and provide new information beyond that obtained in previous experiments.

15.
Phys Rev Lett ; 92(10): 102003, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15089200

RESUMEN

We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2=0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51+/-0.57 (stat)+/-0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA