Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 651, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110861

RESUMEN

BACKGROUND: Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS: We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION: We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.


Asunto(s)
Begomovirus , Geminiviridae , Solanum lycopersicum , Solanum lycopersicum/genética , Begomovirus/fisiología , Silenciador del Gen , Geminiviridae/genética , Enfermedades de las Plantas
2.
J Exp Bot ; 74(19): 6052-6068, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37449766

RESUMEN

Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.


Asunto(s)
MicroARNs , Inmunidad de la Planta , Inmunidad de la Planta/genética , Plantas/metabolismo , MicroARNs/genética , ARN Interferente Pequeño/genética , Nucleótidos , Enfermedades de las Plantas , Proteínas NLR/genética
3.
J Integr Plant Biol ; 65(7): 1826-1840, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36946519

RESUMEN

Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Co-Represoras , Geminiviridae , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Ciclopentanos/metabolismo , Geminiviridae/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Virus de Plantas
4.
Mol Plant Microbe Interact ; 34(9): 1001-1009, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34110257

RESUMEN

ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are ß-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Pseudomonas syringae/metabolismo
5.
J Exp Bot ; 72(20): 7316-7334, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34329403

RESUMEN

Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente/genética , Pseudomonas syringae
6.
Proc Natl Acad Sci U S A ; 115(6): 1388-1393, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363594

RESUMEN

RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Proteínas Virales/genética , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Begomovirus/química , Interacciones Huésped-Patógeno/genética , Células Vegetales , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Nicotiana/genética , Proteínas Virales/metabolismo
7.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842320

RESUMEN

Geminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.


Asunto(s)
Begomovirus/metabolismo , Geminiviridae/metabolismo , Replicación Viral/genética , Secuencia de Aminoácidos/genética , Begomovirus/patogenicidad , ADN Viral/metabolismo , Geminiviridae/patogenicidad , Lisina/metabolismo , Señales de Localización Nuclear/genética , Unión Proteica/genética , Nicotiana/metabolismo , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/fisiología
8.
J Virol ; 92(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29950424

RESUMEN

Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.


Asunto(s)
Geminiviridae/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Solanum lycopersicum/metabolismo , Proteínas Virales/metabolismo , Geminiviridae/metabolismo , Solanum lycopersicum/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Saccharomyces cerevisiae/genética , Sumoilación , Ubiquitina/metabolismo , Replicación Viral
9.
J Exp Bot ; 69(19): 4633-4649, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30053161

RESUMEN

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidasas/genética , Ligasas/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Ligasas/metabolismo , Filogenia , Alineación de Secuencia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
10.
J Gen Virol ; 98(10): 2607-2614, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28933688

RESUMEN

The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Begomovirus/genética , Interferencia de ARN/fisiología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , ARN Polimerasa Dependiente del ARN/genética
12.
Plant Physiol ; 162(4): 2015-27, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23784464

RESUMEN

Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme ß-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Cianuros/metabolismo , Cisteína Sintasa/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad de la Planta/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidad , Cisteína Sintasa/metabolismo , Resistencia a la Enfermedad , Geminiviridae/patogenicidad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Hidroxocobalamina/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Oxidorreductasas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Plant Cell ; 23(3): 1014-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21441437

RESUMEN

Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein-GAI, a substrate of the SCF(SLY1). Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.


Asunto(s)
Acetatos/farmacología , Arabidopsis/virología , Proteínas Cullin/genética , Ciclopentanos/farmacología , Geminiviridae/patogenicidad , Oxilipinas/farmacología , Aminoácidos Cíclicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Complejo del Señalosoma COP9 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión/genética , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Methods Mol Biol ; 2732: 103-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060120

RESUMEN

Viruses comprise the most abundant genetic material in the biosphere; however, global viral genomic population (virome) has been largely underestimated. Recently, high-throughput sequencing (HTS) has provided a powerful tool for the detection of known viruses and the discovery of novel viral species from environmental and individual samples using metagenomics and ecogenomics approaches, respectively. Viruses with circular DNA single-stranded (ssDNA) genomes belonging to the begomovirus genera (family Geminiviridae) constitute the largest group of emerging plant viruses worldwide. The knowledge of begomoviruses viromes is mostly restricted to crop plant systems; nevertheless, it has been described that noncultivated plants specifically at the interface between wild and cultivated plants are important reservoirs leading to viral evolution and the emergence of new diseases. Here we present a protocol that allows the identification and isolation of known and novel begomoviruses species infecting cultivated and noncultivated plant species. The method consists of circular viral molecules enrichment by rolling circle amplification (RCA) from begomovirus-positive total plant DNA, followed by NGS-based metagenomic sequencing. Subsequently, metagenomic reads are processed for taxonomic classification using Viromescan software and a customized Geminiviridae family database, and begomovirus-related reads are used for contigs assembly and annotation using Spades software and Blastn algorithm, respectively. Then, the obtained begomovirus-related signatures are used as templates for specific primers design and implemented for PCR-based ecogenomic identification of individual samples harboring the corresponding viral species. Lastly, full-length begomovirus genomes are obtained by RCA-based amplification from total plant DNA of selected individual samples, cloning, and viral molecular identity corroborated by Sanger sequencing. Conclusively, the identification and isolation of a novel monopartite begomovirus species native to the New World (NW) named Gallium leaf deformation virus (GLDV) is shown.


Asunto(s)
Begomovirus , ADN Viral , ADN Viral/genética , Filogenia , Plantas/genética , Begomovirus/genética , Genoma Viral , Metagenómica/métodos , ADN de Plantas , ADN Circular/genética , Enfermedades de las Plantas
15.
Mol Plant Microbe Interact ; 26(9): 1004-15, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23697374

RESUMEN

In plants, post-transcriptional gene silencing (PTGS) is a sequence-specific mechanism of RNA degradation induced by double-stranded RNA (dsRNA), which is processed into small interfering RNAs (siRNAs). siRNAs are methylated and, thereby, stabilized by the activity of the S-adenosylmethionine-dependent RNA methyltransferase HEN1. PTGS is amplified by host-encoded RNA-dependent RNA polymerases (RDR), which generate dsRNA that is processed into secondary siRNAs. To counteract this RNA silencing-mediated response of the host, plant viruses express proteins with silencing suppression activity. Here, we report that the coat protein (CP) of crinivirus (family Closteroviridae, genus Crinivirus) Tomato chlorosis virus, a known suppressor of silencing, interacts with S-adenosylhomocysteine hydrolase (SAHH), a plant protein essential for sustaining the methyl cycle and S-adenosylmethionine-dependent methyltransferase activity. Our results show that, by contributing to an increased accumulation of secondary siRNAs generated by the action of RDR6, SAHH enhances local RNA silencing. Although downregulation of SAHH prevents local silencing, it enhances the spread of systemic silencing. Our results also show that SAHH is important in the suppression of local RNA silencing not only by the crinivirus Tomato chlorosis virus CP but also by the multifunctional helper component-proteinase of the potyvirus Potato virus Y.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Proteínas de la Cápside/metabolismo , Crinivirus/fisiología , Regulación de la Expresión Génica de las Plantas , Nicotiana/enzimología , Enfermedades de las Plantas/inmunología , Adenosilhomocisteinasa/genética , Proteínas de la Cápside/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Metilación , Enfermedades de las Plantas/virología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/fisiología , Interferencia de ARN , ARN de Planta/genética , ARN Viral/genética , ARN Viral/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/virología , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
New Phytol ; 199(2): 464-475, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23614786

RESUMEN

Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses.


Asunto(s)
Arabidopsis/virología , Metilación de ADN/genética , ADN de Plantas/genética , Geminiviridae/metabolismo , Silenciador del Gen , Transcripción Genética , Proteínas Virales/metabolismo , Arabidopsis/genética , Citosina/metabolismo , ADN de Plantas/metabolismo , ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Regulación hacia Abajo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Supresión Genética , Nicotiana/enzimología , Nicotiana/genética
18.
Cell Mol Life Sci ; 69(19): 3269-83, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903295

RESUMEN

Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.


Asunto(s)
Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Procesamiento Proteico-Postraduccional , Temperatura
19.
Mol Plant Microbe Interact ; 25(10): 1294-306, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22712505

RESUMEN

Tomato yellow leaf curl disease (TYLCD) is caused by a complex of phylogenetically related Begomovirus spp. that produce similar symptoms when they infect tomato plants but have different host ranges. In this work, we have evaluated the gene-silencing-suppression activity of C2, C4, and V2 viral proteins isolated from the four main TYLCD-causing strains in Spain in Nicotiana benthamiana. We observed varying degrees of local silencing suppression for each viral protein tested, with V2 proteins from all four viruses exhibiting the strongest suppression activity. None of the suppressors were able to avoid the spread of the systemic silencing, although most produced a delay. In order to test the silencing-suppression activity of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) proteins in a shared (tomato) and nonshared (bean) host, we established novel patch assays. Using these tools, we found that viral proteins from TYLCV were able to suppress silencing in both hosts, whereas TYLCSV proteins were only effective in tomato. This is the first time that viral suppressors from a complex of disease-causing geminiviruses have been subject to a comprehensive analysis using two economically important crop hosts, as well as the established N. benthamiana plant model.


Asunto(s)
Begomovirus/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Silenciador del Gen/fisiología , Nicotiana/virología , Virus de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/virología , Begomovirus/genética , Evolución Biológica , Clonación Molecular , Virus de Plantas/genética , Plantas Modificadas Genéticamente , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
J Virol ; 85(19): 9789-800, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775461

RESUMEN

Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells by using plant DNA polymerases. These viruses encode a protein designated AL1, Rep, or AC1 that is essential for viral replication. AL1 is an oligomeric protein that binds to double-stranded DNA, catalyzes the cleavage and ligation of single-stranded DNA, and induces the accumulation of host replication machinery. It also interacts with several host proteins, including the cell cycle regulator retinoblastoma-related protein (RBR), the DNA replication protein PCNA (proliferating cellular nuclear antigen), and the sumoylation enzyme that conjugates SUMO to target proteins (SUMO-conjugating enzyme [SCE1]). The SCE1-binding motif was mapped by deletion to a region encompassing AL1 amino acids 85 to 114. Alanine mutagenesis of lysine residues in the binding region either reduced or eliminated the interaction with SCE1, but no defects were observed for other AL1 functions, such as oligomerization, DNA binding, DNA cleavage, and interaction with AL3 or RBR. The lysine mutations reduced or abolished virus infectivity in plants and viral DNA accumulation in transient-replication assays, suggesting that the AL1-SCE1 interaction is required for viral DNA replication. Ectopic AL1 expression did not result in broad changes in the sumoylation pattern of plant cells, but specific changes were detected, indicating that AL1 modifies the sumoylation state of selected host proteins. These results established the importance of AL1-SCE1 interactions during geminivirus infection of plants and suggested that AL1 alters the sumoylation of selected host factors to create an environment suitable for viral infection.


Asunto(s)
Geminiviridae/patogenicidad , Interacciones Huésped-Patógeno , Nicotiana/virología , Mapeo de Interacción de Proteínas , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Análisis Mutacional de ADN , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Eliminación de Secuencia , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA