Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Soc Nephrol ; 33(3): 487-501, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031569

RESUMEN

AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.


Asunto(s)
Lesión Renal Aguda , Células Madre Pluripotentes , Lesión Renal Aguda/metabolismo , Animales , Femenino , Humanos , Riñón/metabolismo , Masculino , Mamíferos , Nefronas/metabolismo , Organoides/metabolismo
2.
World J Stem Cells ; 15(6): 530-547, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37424945

RESUMEN

Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer's disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.

3.
Tissue Eng Part A ; 29(13-14): 372-383, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37130035

RESUMEN

Urine-derived stem cells (USCs) are adult kidney cells that have been isolated from a urine sample and propagated in tissue culture on gelatin-coated plates. Urine is a practical and completely painless source of cells for gene and cell therapy applications. We have isolated, expanded, and optimized transfection of USCs to develop regenerative therapies based on piggyBac transposon modification. USCs from a healthy donor sample were isolated according to established protocols. Within 2 months, 10 clones had been expanded, analyzed, and frozen. Fluorescence-activated cell sorting analysis of individual clones revealed that all 10 clones expressed characteristic USC markers (97-99% positive for CD44, CD73, CD90, and CD146; negative for CD31, CD34, and CD45). The isolated USCs were successfully differentiated along the osteogenic, adipogenic, and chondrogenic lineages, suggesting multipotent differentiation capacity. Additionally, the USCs were differentiated into podocytes positive for NEPHRIN (NPHS1), podocalyxin, and Wilms tumor 1 (WT1). Transfection of USCs with a strongly expressing Green fluorescent protein plasmid was optimized to achieve 61% efficiency in live cells using several commercially available lipophilic reagents. Transgene promoters were compared in five luciferase-expressing piggyBac transposons by live animal imaging. The CMV promoter produced the highest luciferase signal, followed by EF1-α. Finally, HEK-293 and USCs were transfected with piggyBac transposons expressing lactoferrin and DNase1 for treatment of acute kidney injury associated with rhabdomyolysis. We found that both proteins were expressed in USCs and that lactoferrin was successfully secreted into the cell culture media. In conclusion, USCs represent a clinically relevant cell type that can express nonviral transgenes. Impact statement Acute kidney injury (AKI) affects over 13 million people worldwide each year, with hospitalization rates on the rise. There are no therapies that directly regenerate the kidney after AKI. Each human kidney contains approximately one million nephrons that process ∼100 L of urinary filtrate each day. Thousands of kidney cells become detached and are excreted in the urine. A small percentage of these cells can be clonally derived into urine-derived stem cells. We have optimized methods for genome engineering of adult human urine-derived stem cells for future applications in regenerative approaches to treat kidney injury.


Asunto(s)
Lesión Renal Aguda , Lactoferrina , Adulto , Animales , Humanos , Lactoferrina/genética , Células HEK293 , Células Madre , Diferenciación Celular , Desoxirribonucleasas/metabolismo
4.
Dis Model Mech ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942584

RESUMEN

Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Células Endoteliales/metabolismo , Riñón/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Hemoglobinas/farmacología , Hemoglobinas/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Lesión Renal Aguda/tratamiento farmacológico
5.
Stem Cell Res Ther ; 13(1): 355, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883199

RESUMEN

BACKGROUND: In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS: We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS: Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS: We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Células Madre Pluripotentes Inducidas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glomérulos Renales/metabolismo , Ratones , Podocitos/metabolismo
6.
STAR Protoc ; 2(4): 100898, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34746862

RESUMEN

Several kidney diseases including congenital nephrotic syndrome, Alport syndrome, and diabetic nephropathy are linked to podocyte dysfunction. Human podocytopathies may be modeled in either primary or immortalized podocyte cell lines. Human induced pluripotent stem cell (hiPSC)-derived podocytes are a source of human podocytes, but the existing protocols have variable efficiency and expensive media components. We developed an accelerated, feeder-free protocol for deriving functional, mature podocytes from hiPSCs in only 12 days, saving time and money compared with other approaches.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Podocitos/citología , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Humanos
7.
Tissue Eng Part A ; 27(13-14): 881-893, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32873223

RESUMEN

Differentiating cerebellar organoids can be challenging due to complex cell organization and structure in the cerebellum. Different approaches were investigated to recapitulate differentiation process of the cerebellum from human-induced pluripotent stem cells (hiPSCs) without high efficiency. This study was carried out to test the hypothesis that the combination of different signaling factors including retinoic acid (RA), Wnt activator, and sonic hedgehog (SHH) activator promotes the cerebellar differentiation of hiPSCs. Wnt, RA, and SHH pathways were activated by CHIR99021 (CHIR), RA, and purmorphamine (PMR), respectively. Different combinations of the morphogens (RA/CHIR, RA/PMR, CHIR/PMR, and RA/CHIR/PMR) were utilized, and the spheroids (day 35) were characterized for the markers of three cerebellum layers (the molecular layer, the Purkinje cell layer, and the granule cell layer). Of all the combinations tested, RA/CHIR/PMR promoted both the Purkinje cell layer and the granule cell layer differentiation. The cells also exhibited electrophysiological characteristics using whole-cell patch clamp recording, especially demonstrating Purkinje cell electrophysiology. This study should advance the understanding of different signaling pathways during cerebellar development to engineer cerebellum organoids for drug screening and disease modeling. Impact statement This study investigated the synergistic effects of retinoic acid, Wnt activator, and sonic hedgehog activator on cerebellar patterning of human-induced pluripotent stem cell (hiPSC) spheroids and organoids. The results indicate that the combination promotes the differentiation of the Purkinje cell layer and the granule cell layer. The cells also exhibit electrophysiological characteristics using whole-cell patch clamp recording, especially demonstrating Purkinje cell electrophysiology. The findings are significant for understanding the biochemical signaling of three-dimensional microenvironment on neural patterning of hiPSCs for applications in organoid engineering, disease modeling, and drug screening.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog , Células Madre Pluripotentes Inducidas , Tretinoina , Vía de Señalización Wnt , Cerebelo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
8.
Tissue Eng Part B Rev ; 26(2): 129-144, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31847715

RESUMEN

Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.


Asunto(s)
Comunicación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Vesículas Extracelulares/fisiología , Células Madre Pluripotentes Inducidas/citología , Enfermedades del Sistema Nervioso/terapia , Ingeniería de Tejidos/métodos , Animales , Humanos
9.
Tissue Eng Part B Rev ; 26(4): 367-382, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32571167

RESUMEN

Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-ß, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor ß signaling promotes PC cell survival, TGF-ß signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.


Asunto(s)
Encéfalo/citología , Diferenciación Celular , Linaje de la Célula , Enfermedades Neurodegenerativas/terapia , Pericitos/citología , Células Madre Pluripotentes/citología , Ingeniería de Tejidos/métodos , Animales , Humanos
10.
Tissue Eng Part A ; 26(7-8): 419-431, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686622

RESUMEN

The human brain formation involves complicated processing, which is regulated by a gene regulatory network influenced by different signaling pathways. The cross-regulatory interactions between elements of different pathways affect the process of cell fate assignment during neural and astroglial tissue patterning. In this study, the interactions between Wnt and Notch pathways, the two major pathways that influence neural and astroglial differentiation of human induced pluripotent stem cells (hiPSCs) individually, were investigated. In particular, the synergistic effects of Wnt-Notch pathway on the neural patterning processes along the anterior-posterior or dorsal-ventral axis of hiPSC-derived cortical spheroids were explored. The human cortical spheroids derived from hiPSCs were treated with Wnt activator CHIR99021 (CHIR), Wnt inhibitor IWP4, and Notch inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester [DAPT]) individually, or in combinations (CHIR + DAPT, IWP4 + DAPT). The results suggest that CHIR + DAPT can promote Notch signaling, similar or higher than CHIR alone, whereas IWP4 + DAPT reduces Notch activity compared to IWP4 alone. Also, CHIR + DAPT promoted hindbrain marker HOXB4 expression more consistently than CHIR alone, while IWP4 + DAPT promoted Olig2 expression, indicating the synergistic effects distinctly different from that of the individual small molecule. In addition, IWP4 simultaneously promoted dorsal and ventral identity. The patterned neural spheroids can be switched for astroglial differentiation using bone morphogenetic protein 4. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from hiPSCs for disease modeling, drug screening, as well as for hiPSC-based therapies. Impact Statement Wnt signaling plays a central role in neural patterning of human pluripotent stem cells. It can interact with Notch signaling in defining dorsal-ventral and rostral-caudal (or anterior-posterior) axis of brain organoids. This study investigates novel Wnt and Notch interactions (i.e., Wntch) in neural patterning of dorsal forebrain spheroids or organoids derived from human induced pluripotent stem cells. The synergistic effects of Wnt activator or inhibitor with Notch inhibitor were observed. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from human stem cells for disease modeling and drug screening, as well as for stem cell-based therapies. The results can be used to establish better in vitro culture methods for efficiently mimicking in vivo structure of central nervous system.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Vía de Señalización Wnt/fisiología , Astrocitos/citología , Astrocitos/metabolismo , Western Blotting , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores Notch/metabolismo
11.
Tissue Eng Part A ; 26(9-10): 527-542, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31696783

RESUMEN

Astrocytes are vital components in neuronal circuitry and there is increasing evidence linking the dysfunction of these cells to a number of central nervous system diseases. Studying the role of these cells in human brain function in the past has been difficult due to limited access to the human brain. In this study, human induced pluripotent stem cells were differentiated into astrospheres using a hybrid plating method, with or without dual SMAD inhibition. The derived cells were assessed for astrocytic markers, brain regional identity, phagocytosis, calcium-transient signaling, reactive oxygen species production, and immune response. Neural degeneration was modeled by stimulation with amyloid-ß (Aß) 42 oligomers. Finally, co-culture was performed for the derived astrospheres with isogenic neurospheres. Results indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix, and are capable of phagocytosing iron oxide particles and responding to Aß42 stimulation (higher oxidative stress, higher TNF-α, and IL-6 expression). RNA-sequencing results reveal the distinct transcriptome of the derived cells responding to Aß42 stimulation for astrocyte markers, chemokines, and brain regional identity. Co-culture experiments show the synaptic activities of neurons and the enhanced neural protection ability of the astroglial cells. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and the formation of engineered neuronal synapses in vitro. The implications lie in neurological disease modeling, drug screening, and studying progression of neural degeneration and the role of stem cell microenvironment. Impact Statement Human pluripotent stem cell-derived astrocytes are a powerful tool for disease modeling and drug screening. However, the properties regarding brain regional identity and the immune response to neural degeneration stimulus have not been well characterized. Results of this study indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix (ECM), and are capable of phagocytosing iron oxide particles and responding to amyloid-ß oligomers, showing the distinct transcriptome in astrocyte markers, chemokines, and brain regional identity. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and engineering neural tissues in vitro.


Asunto(s)
Péptidos beta-Amiloides/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Humanos , Degeneración Nerviosa/fisiopatología , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Transducción de Señal/fisiología , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
12.
Cells ; 8(3)2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875781

RESUMEN

The mechanism that causes the Alzheimer's disease (AD) pathologies, including amyloid plaque, neurofibrillary tangles, and neuron death, is not well understood due to the lack of robust study models for human brain. Three-dimensional organoid systems based on human pluripotent stem cells (hPSCs) have shown a promising potential to model neurodegenerative diseases, including AD. These systems, in combination with engineering tools, allow in vitro generation of brain-like tissues that recapitulate complex cell-cell and cell-extracellular matrix (ECM) interactions. Brain ECMs play important roles in neural differentiation, proliferation, neuronal network, and AD progression. In this contribution related to brain ECMs, recent advances in modeling AD pathology and progression based on hPSC-derived neural cells, tissues, and brain organoids were reviewed and summarized. In addition, the roles of ECMs in neural differentiation of hPSCs and the influences of heparan sulfate proteoglycans, chondroitin sulfate proteoglycans, and hyaluronic acid on the progression of neurodegeneration were discussed. The advantages that use stem cell-based organoids to study neural degeneration and to investigate the effects of ECM development on the disease progression were highlighted. The contents of this article are significant for understanding cell-matrix interactions in stem cell microenvironment for treating neural degeneration.


Asunto(s)
Matriz Extracelular/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Organoides/metabolismo , Células Madre Pluripotentes/citología , Enfermedad de Alzheimer/patología , Animales , Humanos , Proteoglicanos/metabolismo
13.
Sci Rep ; 9(1): 1295, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718597

RESUMEN

Stem cell-derived cardiomyocytes and vascular cells can be used for a variety of applications such as studying human heart development and modelling human disease in culture. In particular, protocols based on modulation of Wnt signaling were able to produce high quality of cardiomyocytes or vascular cells from human pluripotent stem cells (hPSCs). However, the mechanism behind the development of 3D cardiovascular spheroids into either vascular or cardiac cells has not been well explored. Hippo/Yes-associated protein (YAP) signaling plays important roles in the regulation of organogenesis, but its impact on cardiovascular differentiation has been less evaluated. In this study, the effects of seeding density and a change in YAP signaling on 3D cardiovascular spheroids patterning from hPSCs were evaluated. Compared to 2D culture, 3D cardiovascular spheroids exhibited higher levels of sarcomeric striations and higher length-to-width ratios of α-actinin+ cells. The spheroids with high seeding density exhibited more α-actinin+ cells and less nuclear YAP expression. The 3D cardiovascular spheroids were also treated with different small molecules, including Rho kinase inhibitor (Y27632), Cytochalasin D, Dasatinib, and Lysophosphatidic acid to modulate YAP localization. Nuclear YAP inhibition resulted in lower expression of active ß-catenin, vascular marker, and MRTF, the transcription factor mediated by RhoGTPases. Y27632 also promoted the gene expression of MMP-2/-3 (matrix remodeling) and Notch-1 (Notch signaling). These results should help our understanding of the underlying effects for the efficient patterning of cardiovascular spheroids after mesoderm formation from hPSCs.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Esferoides Celulares , Biomarcadores , Comunicación Celular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
14.
Stem Cells Int ; 2019: 2382534, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827525

RESUMEN

Brain spheroids or organoids derived from human pluripotent stem cells (hiPSCs) are still not capable of completely recapitulating in vivo human brain tissue, and one of the limitations is lack of microglia. To add built-in immune function, coculture of the dorsal forebrain spheroids with isogenic microglia-like cells (D-MG) was performed in our study. The three-dimensional D-MG spheroids were analyzed for their transcriptome and compared with isogenic microglia-like cells (MG). Cortical spheroids containing microglia-like cells displayed different metabolic programming, which may affect the associated phenotype. The expression of genes related to glycolysis and hypoxia signaling was increased in cocultured D-MG spheroids, indicating the metabolic shift to aerobic glycolysis, which is in favor of M1 polarization of microglia-like cells. In addition, the metabolic pathways and the signaling pathways involved in cell proliferation, cell death, PIK3/AKT/mTOR signaling, eukaryotic initiation factor 2 pathway, and Wnt and Notch pathways were analyzed. The results demonstrate the activation of mTOR and p53 signaling, increased expression of Notch ligands, and the repression of NF-κB and canonical Wnt pathways, as well as the lower expression of cell cycle genes in the cocultured D-MG spheroids. This analysis indicates that physiological 3-D microenvironment may reshape the immunity of in vitro cortical spheroids and better recapitulate in vivo brain tissue function for disease modeling and drug screening.

15.
Cells ; 8(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466320

RESUMEN

Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and the undifferentiated hiPSCs (healthy iPSK3 and Alzheimer's-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100-250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by ß-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aß42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration.


Asunto(s)
Ectodermo/citología , Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mesodermo/citología , Esferoides Celulares/citología , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Ectodermo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mesodermo/metabolismo , MicroARNs/genética , Nanopartículas , Comunicación Paracrina , Tamaño de la Partícula , Esferoides Celulares/metabolismo
16.
Tissue Eng Part A ; 24(7-8): 546-558, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28726548

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética , Células Cultivadas , Citocalasina D/farmacología , Humanos , Fosfoproteínas/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción , Proteínas Wnt/genética , Proteínas Señalizadoras YAP
17.
ACS Biomater Sci Eng ; 4(8): 2922-2933, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30533518

RESUMEN

Extracellular matrix (ECM) components of the brain play complex roles in neurodegenerative diseases. The study of microenvironment of brain tissues with Alzheimer's disease revealed colocalized expression of different ECM molecules such as heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), matrix metal-loproteinases (MMPs), and hyaluronic acid. In this study, both cortical and hippocampal populations were generated from human-induced pluripotent stem cell-derived neural spheroids. The cultures were then treated with heparin (competes for Aß affinity with HSPG), heparinase III (digests HSPGs), chondroitinase (digests CSPGs), hyaluronic acid, and an MMP-2/9 inhibitor (SB-3CT) together with amyloid ß (Aß42) oligomers. The results indicate that inhibition of HSPG binding to Aß42 using either heparinase III or heparin reduces Aß42 expression and increases the population of ß-tubulin III+ neurons, whereas the inhibition of MMP2/9 induces more neurotoxicity. The results should enhance our understanding of the contribution of ECMs to the Aß-related neural cell death.

18.
ACS Biomater Sci Eng ; 4(12): 4354-4366, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31572767

RESUMEN

A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.

19.
Tissue Eng Part A ; 24(13-14): 1125-1137, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29361890

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aß42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aß42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.


Asunto(s)
Microambiente Celular , Corteza Cerebral/citología , Modelos Biológicos , Degeneración Nerviosa/patología , Organoides/citología , Células Madre/citología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Muerte Celular , Supervivencia Celular , Regulación de la Expresión Génica , Humanos , Degeneración Nerviosa/genética , Fenotipo , Esferoides Celulares/citología , Proteínas tau/metabolismo
20.
Tissue Eng Part A ; 24(11-12): 915-929, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29160172

RESUMEN

Organoids, the condensed three-dimensional (3D) tissues emerged at the early stage of organogenesis, are a promising approach to regenerate functional and vascularized organ mimics. While incorporation of heterotypic cell types, such as human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs)-derived neural progenitors aid neural organ development, the interactions of secreted factors during neurogenesis have not been well understood. The objective of this study is to investigate the impact of the composition and structure of 3D hybrid spheroids of hiPSCs and hMSCs on dorsal cortical differentiation and the secretion of extracellular matrices and trophic factors in vitro. The hybrid spheroids were formed at different hiPSC:hMSC ratios (100:0, 75:25, 50:50, 25:75, 0:100) using direct mixing or pre-hiPSC aggregation method, which generated dynamic spheroid structure. The cellular organization, proliferation, neural marker expression, and the secretion of extracellular matrix proteins and the cytokines were characterized. The incorporation of MSCs upregulated Nestin and ß-tubulin III expression (the dorsal cortical identity was shown by Pax6 and TBR1 expression), matrix remodeling proteins, and the secretion of transforming growth factor-ß1 and prostaglandin E2. This study indicates that the appropriate composition and structure of hiPSC-MSC spheroids promote neural differentiation and trophic factor and matrix secretion due to the heterotypic cell-cell interactions.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Técnicas de Cocultivo/métodos , Matriz Extracelular/metabolismo , Humanos , Esferoides Celulares/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA