Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cancer Discov ; 12(9): 2044-2057, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35819403

RESUMEN

The American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) is an international pan-cancer registry with the goal to inform cancer research and clinical care worldwide. Founded in late 2015, the milestone GENIE 9.1-public release contains data from >110,000 tumors from >100,000 people treated at 19 cancer centers from the United States, Canada, the United Kingdom, France, the Netherlands, and Spain. Here, we demonstrate the use of these real-world data, harmonized through a centralized data resource, to accurately predict enrollment on genome-guided trials, discover driver alterations in rare tumors, and identify cancer types without actionable mutations that could benefit from comprehensive genomic analysis. The extensible data infrastructure and governance framework support additional deep patient phenotyping through biopharmaceutical collaborations and expansion to include new data types such as cell-free DNA sequencing. AACR Project GENIE continues to serve a global precision medicine knowledge base of increasing impact to inform clinical decision-making and bring together cancer researchers internationally. SIGNIFICANCE: AACR Project GENIE has now accrued data from >110,000 tumors, placing it among the largest repository of publicly available, clinically annotated genomic data in the world. GENIE has emerged as a powerful resource to evaluate genome-guided clinical trial design, uncover drivers of cancer subtypes, and inform real-world use of genomic data. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Genómica , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Medicina de Precisión , Estados Unidos
2.
Artículo en Inglés | MEDLINE | ID: mdl-34568718

RESUMEN

Comprehensive genomic profiling to inform targeted therapy selection is a central part of oncology care. However, the volume and complexity of alterations uncovered through genomic profiling make it difficult for oncologists to choose the most appropriate therapy for their patients. Here, we present a solution to this problem, The Molecular Registry of Tumors (MRT) and our Molecular Tumor Board (MTB). PATIENTS AND METHODS: MRT is an internally developed system that aggregates and normalizes genomic profiling results from multiple sources. MRT serves as the foundation for our MTB, a team that reviews genomic results for all Duke University Health System cancer patients, provides notifications for targeted therapies, matches patients to biomarker-driven trials, and monitors the molecular landscape of tumors at our institution. RESULTS: Among 215 patients reviewed by our MTB over a 6-month period, we identified 176 alterations associated with therapeutic sensitivity, 15 resistance alterations, and 51 alterations with potential germline implications. Of reviewed patients, 17% were subsequently treated with a targeted therapy. For 12 molecular therapies approved during the course of this work, we identified between two and 71 patients who could qualify for treatment based on retrospective MRT data. An analysis of 14 biomarker-driven clinical trials found that MRT successfully identified 42% of patients who ultimately enrolled. Finally, an analysis of 4,130 comprehensive genomic profiles from 3,771 patients revealed that the frequency of clinically significant therapeutic alterations varied from approximately 20% to 70% depending on the tumor type and sequencing test used. CONCLUSION: With robust informatics tools, such as MRT, and the right MTB structure, a precision cancer medicine program can be developed, which provides great benefit to providers and patients with cancer.


Asunto(s)
Neoplasias , Centros Médicos Académicos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/genética , Medicina de Precisión/métodos , Sistema de Registros , Estudios Retrospectivos , Universidades
3.
Nat Rev Gastroenterol Hepatol ; 17(1): 9-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31767987

RESUMEN

IBD treatment is undergoing a transformation with an expanding repertoire of drugs targeting different aspects of the immune response. Three novel classes of drugs have emerged in the past decade that target leukocyte trafficking to the gut (vedolizumab), neutralize key cytokines with antibodies (ustekinumab) and inhibit cytokine signalling pathways (tofacitinib). In advanced development are other drugs for IBD, including therapies targeting other cytokines such as IL-23 and IL-6. However, all agents tested so far are hampered by primary and secondary loss of response, so it is desirable to develop personalized strategies to identify which patients should be treated with which drugs. Stratification of patients with IBD by clinical parameters alone lacks sensitivity, and alternative modalities are now needed to deliver precision medicine in IBD. High-resolution profiling of immune response networks in individual patients is a promising approach and different technical platforms, including in vivo real-time molecular endoscopy, tissue transcriptomics and germline genetics, are promising tools to help predict responses to specific therapies. However, important challenges remain regarding the clinical utility of these technologies, including their scalability and accessibility. This Review focuses on unravelling some of the complexity of mucosal immune responses in IBD pathogenesis and how current and emerging analytical platforms might be harnessed to effectively stratify and individualise IBD therapy.


Asunto(s)
Fármacos Gastrointestinales/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Medicina de Precisión , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Movimiento Celular , Citocinas/inmunología , Endoscopía Gastrointestinal , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Microscopía Intravital , Quinasas Janus/inmunología , Linfocitos/inmunología , Linfocitos/patología , Microscopía Confocal , Pronóstico , Transducción de Señal , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA