Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Crit Rev Biochem Mol Biol ; 57(2): 188-204, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34923891

RESUMEN

ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.


Asunto(s)
Adenosina Trifosfato , Endopeptidasa Clp , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Hidrólisis , Péptido Hidrolasas/metabolismo
2.
J Biol Chem ; 298(8): 102210, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780837

RESUMEN

Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX-like enzyme and instead harbors three paralogous genes (FDPF1-3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a "stand-alone" FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.


Asunto(s)
Rubredoxinas , Trichomonas vaginalis , Flavinas/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Agua/metabolismo
3.
Nat Chem Biol ; 15(10): 966-974, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31477916

RESUMEN

Pseudouridine (Ψ) is a post-transcriptional RNA modification that alters RNA-RNA and RNA-protein interactions that affect gene expression. Messenger RNA pseudouridylation was recently discovered as a widespread and conserved phenomenon, but the mechanisms responsible for selective, regulated pseudouridylation of specific sequences within mRNAs were unknown. Here, we have revealed mRNA targets for five pseudouridine synthases and probed the determinants of mRNA target recognition by the predominant mRNA pseudouridylating enzyme, Pus1, by developing high-throughput kinetic analysis of pseudouridylation in vitro. Combining computational prediction and rational mutational analysis revealed an RNA structural motif that is both necessary and sufficient for mRNA pseudouridylation. Applying this structural context information predicted hundreds of additional mRNA targets that were pseudouridylated in vivo. These results demonstrate a structure-dependent mode of mRNA target recognition by a conserved pseudouridine synthase and implicate modulation of RNA structure as the probable mechanism to regulate mRNA pseudouridylation.


Asunto(s)
Hidroliasas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Mutación , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética
4.
Biochemistry ; 57(49): 6787-6796, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30418765

RESUMEN

The ClpXP protease plays important roles in protein homeostasis and quality control. ClpX is a ring-shaped AAA+ homohexamer that unfolds target proteins and translocates them into the ClpP peptidase for degradation. AAA+ modules in each ClpX subunit-consisting of a large AAA+ domain, a short hinge-linker element, and a small AAA+ domain-mediate the mechanical activities of the ring hexamer. Here, we investigate the roles of these hinge-linker elements in ClpX function. Deleting one hinge-linker element in a single-chain ClpX pseudohexamer dramatically decreases unfolding and degradation activity, in part by compromising the formation of closed rings, protein-substrate binding, and ClpP binding. Covalently reclosing the broken hinge-linker interface rescues activity. Deleting one hinge-linker element from a single-chain dimer or trimer prevents assembly of stable hexamers. Mutationally disrupting a hinge-linker element preserves closed-ring assembly but reduces ATP-hydrolysis cooperativity and degradation activity. These results indicate that hinge-linker length and flexibility are optimized for efficient substrate unfolding and support a model in which the hinge-linker elements of ClpX facilitate efficient degradation both by maintaining proper ring geometry and facilitating subunit-subunit communication. This model informs our understanding of ClpX as well as the larger AAA+ family of motor proteins, which play diverse roles in converting chemical into mechanical energy in all cells.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfato/metabolismo , Fenómenos Biomecánicos , Endopeptidasa Clp/genética , Proteínas de Escherichia coli/genética , Hidrólisis , Microscopía Electrónica , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagénesis , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteostasis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Respuesta de Proteína Desplegada
5.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37986829

RESUMEN

Prominin-1 (Prom1) is a five-transmembrane-pass integral membrane protein that associates with curved regions of the plasma membrane. Prom1 interacts with membrane cholesterol and actively remodels the plasma membrane. Membrane bending activity is particularly evident in photoreceptors, where Prom1 loss-of-function mutations cause failure of outer segment homeostasis, leading to cone-rod retinal dystrophy (CRRD). The Tweety Homology (Ttyh) protein family has been proposed to be homologous to Prominin, but it is not known whether Ttyh proteins have an analogous membrane-bending function. Here, we characterize the membrane-bending activity of human Prom1 and Ttyh1 in native bilayer membranes. We find that Prom1 and Ttyh1 both induce formation of extracellular vesicles (EVs) in cultured mammalian cells and that the EVs produced are biophysically similar. Ttyh1 is more abundant in EV membranes than Prom1 and produces EVs with membranes that are more tubulated than Prom1 EVs. We further show that Prom1 interacts more stably with membrane cholesterol than Ttyh1 and that this may contribute to membrane bending inhibition in Prom1 EVs. Intriguingly, a loss-of-function mutation in Prom1 associated with CRRD induces particularly stable cholesterol binding. These experiments provide mechanistic insight into Prominin function in CRRD and suggest that Prom and Ttyh belong to a single family of functionally related membrane-bending, EV-generating proteins.

6.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746426

RESUMEN

In eukaryotes, the essential process of cellular respiration takes place in the cristae of mitochondria. The protein Mic60 is known to stabilize crista junctions; however, how the C-terminal Mitofilin domain of Mic60 mediates cristae-supported respiration remains elusive. Here, we used ancestral sequence reconstruction to generate Mitofilin ancestors up to and including the last opisthokont common ancestor (LOCA). We found that yeast-lineage derived Mitofilin ancestors as far back as the LOCA rescue respiration. By comparing Mitofilin ancestors with different respiratory phenotypes, we identify four residues that explain the difference between respiration functional yeast- and non-functional animal-derived common Mitofilin ancestors. Our results imply that Mitofilin-supported respiration in yeast stems from a conserved mechanism, and provide a foundation for investigating the divergence of candidate crista junction interactions present during the emergence of eukaryotes.

7.
Nat Commun ; 14(1): 7281, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949857

RESUMEN

AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , Endopeptidasa Clp/metabolismo , Proteolisis , Translocación Genética
8.
Elife ; 92020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33089779

RESUMEN

When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In Escherichia coli and other eubacteria, the tmRNA system rescues stalled ribosomes and adds an ssrA tag or degron to the C-terminus of the incomplete protein, which directs degradation by the AAA+ ClpXP protease. Here, we present cryo-EM structures of ClpXP bound to the ssrA degron. C-terminal residues of the ssrA degron initially bind in the top of an otherwise closed ClpX axial channel and subsequently move deeper into an open channel. For short-degron protein substrates, we show that unfolding can occur directly from the initial closed-channel complex. For longer degron substrates, our studies illuminate how ClpXP transitions from specific recognition into a nonspecific unfolding and translocation machine. Many AAA+ proteases and protein-remodeling motors are likely to employ similar multistep recognition and engagement strategies.


Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Pliegue del ARN , Proteínas de Unión al ARN/metabolismo , Microscopía por Crioelectrón , Endopeptidasa Clp/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Conformación Proteica , Proteínas de Unión al ARN/química , Ribosomas/metabolismo
9.
Elife ; 92020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258771

RESUMEN

AAA+ proteases perform regulated protein degradation in all kingdoms of life and consist of a hexameric AAA+ unfoldase/translocase in complex with a self-compartmentalized peptidase. Based on asymmetric features of cryo-EM structures and a sequential hand-over-hand model of substrate translocation, recent publications have proposed that the AAA+ unfoldases ClpA and ClpX rotate with respect to their partner peptidase ClpP to allow function. Here, we test this model by covalently crosslinking ClpA to ClpP to prevent rotation. We find that crosslinked ClpAP complexes unfold, translocate, and degrade protein substrates in vitro, albeit modestly slower than uncrosslinked enzyme controls. Rotation of ClpA with respect to ClpP is therefore not required for ClpAP protease activity, although some flexibility in how the AAA+ ring docks with ClpP may be necessary for optimal function.


Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Reactivos de Enlaces Cruzados , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteolisis
10.
Elife ; 92020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32108573

RESUMEN

ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.


Asunto(s)
Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación Proteica , Proteolisis , Especificidad por Sustrato
11.
Elife ; 82019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31251172

RESUMEN

Most AAA+ remodeling motors denature proteins by pulling on the peptide termini of folded substrates, but it is not well-understood how motors produce grip when resisting a folded domain. Here, at single amino-acid resolution, we identify the determinants of grip by measuring how substrate tail sequences alter the unfolding activity of the unfoldase-protease ClpXP. The seven amino acids abutting a stable substrate domain are key, with residues 2-6 forming a core that contributes most significantly to grip. ClpX grips large hydrophobic and aromatic side chains strongly and small, polar, or charged side chains weakly. Multiple side chains interact with pore loops synergistically to strengthen grip. In combination with recent structures, our results support a mechanism in which unfolding grip is primarily mediated by non-specific van der Waal's interactions between core side chains of the substrate tail and a subset of YVG loops at the top of the ClpX axial pore.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Desplegamiento Proteico , Secuencia de Aminoácidos , Proteínas Fluorescentes Verdes/metabolismo , Unión Proteica , Proteolisis , Especificidad por Sustrato
12.
Science ; 352(6292): 1408-12, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27313037

RESUMEN

RNA contains more than 100 distinct modifications that promote the functions of stable noncoding RNAs in translation and splicing. Recent technical advances have revealed widespread and sparse modification of messenger RNAs with N(6)-methyladenosine (m(6)A), 5-methylcytosine (m(5)C), and pseudouridine (Ψ). Here we discuss the rapidly evolving understanding of the location, regulation, and function of these dynamic mRNA marks, collectively termed the epitranscriptome. We highlight differences among modifications and between species that could instruct ongoing efforts to understand how specific mRNA target sites are selected and how their modification is regulated. Diverse molecular consequences of individual m(6)A modifications are beginning to be revealed, but the effects of m(5)C and Ψ remain largely unknown. Future work linking molecular effects to organismal phenotypes will broaden our understanding of mRNA modifications as cell and developmental regulators.


Asunto(s)
Epigénesis Genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Transcriptoma , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Metilación , Metiltransferasas/metabolismo , Seudouridina/química , Seudouridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA