Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Occup Environ Med ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147576

RESUMEN

OBJECTIVE: This follow-up study of uranium processing workers at the Fernald Feed Materials Production Center examines the relationship between radiation exposure and cancer and non-cancer mortality among 6403 workers employed for at least 30 days between 1951 and 1985. METHODS: We estimated cumulative, individual, annualised doses to 15 organs/tissues from external, internal and radon exposures. Vital status and cause of death were ascertained in 2017. The analysis employed standardised mortality ratios, Cox proportional hazards and Poisson regression models. Competing risk analysis was conducted for cardiovascular disease (CVD) mortality risk given several assumptions about risk independent of competing outcomes. Emphysema was examined to assess the potential for confounding by smoking. RESULTS: Vital status was confirmed for 98.1% of workers, with 65.1% deceased. All-cause mortality was less than expected in salaried but not hourly workers when compared with the US population. A statistically significant dose response was observed between external (but not total or internal) lung dose and lung cancer mortality (HR at 100 mGy adjusted for internal dose=1.45; 95% CI=1.05 to 2.01). Significantly increased HRs at 100 mGy dose to heart were observed for CVD (1.27; 95% CI=1.07 to 1.50) and ischaemic heart disease (1.30; 95% CI=1.07 to 1.58). CVD risk remained elevated regardless of competing risk assumptions. Both external and internal radiation were associated with emphysema. CONCLUSIONS: Lung cancer was associated with external dose, though positive dose responses for emphysema imply residual confounding by smoking. Novel use of competing risk analysis for CVD demonstrates leveraging retrospective data for future risk prediction.

2.
Int J Radiat Biol ; : 1-12, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058334

RESUMEN

PURPOSE: Epidemiological studies of stochastic radiation health effects such as cancer, meant to estimate risks of the adverse effects as a function of radiation dose, depend largely on estimates of the radiation doses received by the exposed group under study. Those estimates are based on dosimetry that always has uncertainty, which often can be quite substantial. Studies that do not incorporate statistical methods to correct for dosimetric uncertainty may produce biased estimates of risk and incorrect confidence bounds on those estimates. This paper reviews commonly used statistical methods to correct radiation risk regressions for dosimetric uncertainty, with emphasis on some newer methods. We begin by describing the types of dose uncertainty that may occur, including those in which an uncertain value is shared by part or all of a cohort, and then demonstrate how these sources of uncertainty arise in radiation dosimetry. We briefly describe the effects of different types of dosimetric uncertainty on risk estimates, followed by a description of each method of adjusting for the uncertainty. CONCLUSIONS: Each of the method has strengths and weaknesses, and some methods have limited applicability. We describe the types of uncertainty to which each method can be applied and its pros and cons. Finally, we provide summary recommendations and touch briefly on suggestions for further research.

3.
Health Phys ; 125(2): 137-146, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195207

RESUMEN

ABSTRACT: Current practice in reference internal dosimetry assumes a fixed upright standing posture is maintained throughout the dose-integration period. Recently, the mesh-type ICRP adult reference computational phantoms were transformed into different body postures (e.g., sitting, squatting) for use in occupational dose reconstruction applications. Here, for the first time, we apply this phantom series to the study of organ dose estimates following radionuclide intake. We consider the specific cases of 137 Cs and 134 Cs ingestion (accidental/occupational intake) with attention to variability in absorbed dose as a function of posture. The ICRP Publication 137 systemic biokinetic model for soluble cesium ingestion was used to compute organ-level time-integrated activity coefficients for reference adults, over a 50-y dose-integration period, for 134 Cs and 137 Cs (and its radioactive progeny 137m Ba). Mean posture time-allocations (h d -1 for standing, sitting, and lying) were taken from published survey data. In accord with modern dosimetry formalisms (e.g., MIRD, ICRP), a posture weighting factor was introduced that accounts for the fraction of time spent within each independent posture. Absorbed dose coefficients were computed using PHITS Monte Carlo simulations. ICRP 103 tissue weighting factors were applied along with the posture weighting factors to obtain committed effective dose per unit intake (Sv Bq -1 ). For 137 Cs ingestion, most organ absorbed dose coefficients were negligibly to marginally higher (< ~3%) for sitting or crouched (lying fetal/semi-fetal) postures maintained over the dose commitment period, relative to the upright standing posture. The committed effective dose coefficients were 1.3 × 10 -8 Sv Bq -1 137 Cs for standing, sitting, or crouched postures; thus, the posture-weighted committed effective dose was not significantly different than the committed effective dose for a maintained upright standing posture. For 134 Cs ingestion, most organ absorbed dose coefficients for the sitting and crouched postures were significantly larger than the standing posture, but the differences were still considered minor (< ~8% for most organs). The committed effective dose coefficients were 1.2 × 10 -8 Sv Bq -1 134 Cs for the standing posture and 1.3 × 10 -8 Sv Bq -1 134 Cs for the sitting or crouched posture. The posture-weighted committed effective dose was 1.3 × 10 -8 Sv Bq -1 134 Cs. Body posture has minor influence on organ-level absorbed dose coefficients and committed effective dose for ingestion of soluble 137 Cs or 134 Cs.


Asunto(s)
Postura , Radiometría , Radioisótopos de Cesio , Fantasmas de Imagen , Método de Montecarlo , Dosis de Radiación
4.
Int J Radiat Biol ; 99(2): 208-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35758985

RESUMEN

BACKGROUND: There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS: A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS: Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Uranio , Masculino , Humanos , Femenino , Adulto , Uranio/efectos adversos , Tennessee , Exposición Profesional/efectos adversos , Enfermedades Profesionales/etiología , Estudios de Cohortes , Neoplasias Pulmonares/etiología , Polvo
5.
Int J Radiat Biol ; 98(4): 722-749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34047625

RESUMEN

BACKGROUND: During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS: The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS: Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.


Asunto(s)
Neoplasias Esofágicas , Leucemia , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Plutonio , Femenino , Humanos , Exposición Profesional/efectos adversos
6.
Radiat Prot Dosimetry ; 174(1): 62-67, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27103643

RESUMEN

When it comes to determining radiation protection measurements, complex geometries often require the use of computational modeling to solve the problems; the human body is no exception. However, both old and new phantom models have almost always been rigidly created in the vertical upright position. Oak Ridge National Laboratory solved this issue in 2007 by developing a piece of software named 'Phantom with Moving Arms and Legs (PIMAL)',  which creates a flexible phantom model for computer simulations. Though the initial hermaphrodite phantom is validated, new gender-specific models need validation against generally accepted values. Thus, the purpose of this study was to compare the dose coefficients from PIMAL against known values in Federal Guidance Report 12 for water submersion. Of 21 organ-tissue doses, all but 2 matched to within 15% for photon energies above 1 MeV. For plots with notable discrepancies at multiple energies, including bone surface and effective dose, explanations are given to justify differences.


Asunto(s)
Simulación por Computador , Movimiento , Fantasmas de Imagen , Radiometría , Brazo , Humanos , Pierna , Método de Montecarlo , Fotones , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA