Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Chem Biol ; 13(8): 909-915, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628095

RESUMEN

In Saccharomyces cerevisiae, Yap1 regulates an H2O2-inducible transcriptional response that controls cellular H2O2 homeostasis. H2O2 activates Yap1 by oxidation through the intermediary of the thiol peroxidase Orp1. Upon reacting with H2O2, Orp1 catalytic cysteine oxidizes to a sulfenic acid, which then engages into either an intermolecular disulfide with Yap1, leading to Yap1 activation, or an intramolecular disulfide that commits the enzyme into its peroxidatic cycle. How the first of these two competing reactions, which is kinetically unfavorable, occurs was previously unknown. We show that the Yap1-binding protein Ybp1 brings together Orp1 and Yap1 into a ternary complex that selectively activates condensation of the Orp1 sulfenylated cysteine with one of the six Yap1 cysteines while inhibiting Orp1 intramolecular disulfide formation. We propose that Ybp1 operates as a scaffold protein and as a sulfenic acid chaperone to provide specificity in the transfer of oxidizing equivalents by a reactive sulfenic acid species.


Asunto(s)
Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Ácidos Sulfénicos/metabolismo , Factores de Transcripción/metabolismo
2.
J Cell Sci ; 128(24): 4653-65, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26567217

RESUMEN

Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work, we show that, in Saccharomyces cerevisiae, defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyper-recombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2 and Rnr4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such a response, converging on Dun1. Thus, cells lacking the glutaredoxin Grx5, which are compromised at the core ISC system, show Mec1- and Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-null cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response needs to be activated upon ISC impairment to preserve cell viability.


Asunto(s)
Daño del ADN , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Environ Microbiol ; 19(2): 485-499, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27376881

RESUMEN

In the Saccharomyces cerevisiae eukaryotic model, the induction of the iron regulon genes ARN1, FIT2 and CTH2 by growth-inhibitory concentrations of alachlor (ALA) was dependent on Aft1p expression. This transcription factor was found to be activated through its nuclear localization. The hypersensitivity of the aft1Δ mutant to ALA was abrogated by surplus exogenous iron, suggesting that the role of Aft1p in ALA tolerance may be associated with iron limitation under ALA stress. A transient decrease in the cellular iron content in the ALA-stressed cells supported this idea. In contrast to the upregulation of the nonreductive iron uptake genes ARN1 and FIT2 by ALA, the quantity of FET3 and FTR1 transcripts encoding the high-affinity iron uptake reductive pathway decreased. Yeast cells were apparently more sensitive to ALA when iron uptake occurred through the reductive pathway than when the nonreductive uptake of ferrichrome-bound ferric iron was dominant. On the other hand, the ALA hypersensitivity of the aft1Δ mutant was reversed by medium supplementation with glutathione or N-acetyl-L-cysteine. The results are compatible with possible links between ALA toxicity and perturbations in metal and antioxidant homeostasis, which may be relevant for environmental microbes and higher eukaryotes in situations of inadvertent herbicide contamination.


Asunto(s)
Acetamidas/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Herbicidas/toxicidad , Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Regulón , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Activación Transcripcional
4.
Plant Physiol ; 167(4): 1643-58, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25699589

RESUMEN

Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker's yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factor de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/metabolismo , Meristema/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factor de Unión a CCAAT/genética , Genes Reporteros , Glutarredoxinas/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Meristema/crecimiento & desarrollo , Meristema/fisiología , Meristema/efectos de la radiación , Modelos Biológicos , Mutación , Oxidación-Reducción , Fenotipo , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Brotes de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Transducción de Señal
5.
Appl Environ Microbiol ; 80(20): 6316-27, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107961

RESUMEN

The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.


Asunto(s)
Glutatión Transferasa/metabolismo , Phanerochaete/efectos de los fármacos , Phanerochaete/genética , Extractos Vegetales/farmacología , Quercus/química , Acetona/química , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Glutatión Transferasa/genética , Inactivación Metabólica , Isoenzimas , Lignina/metabolismo , Peroxidación de Lípido , Estrés Oxidativo/efectos de los fármacos , Peróxidos/química , Peróxidos/metabolismo , Phanerochaete/metabolismo , Extractos Vegetales/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Madera/microbiología
6.
Cell Rep ; 42(5): 112463, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37141096

RESUMEN

Ubiquitination controls numerous cellular processes, and its deregulation is associated with many pathologies. The Nse1 subunit in the Smc5/6 complex contains a RING domain with ubiquitin E3 ligase activity and essential functions in genome integrity. However, Nse1-dependent ubiquitin targets remain elusive. Here, we use label-free quantitative proteomics to analyze the nuclear ubiquitinome of nse1-C274A RING mutant cells. Our results show that Nse1 impacts the ubiquitination of several proteins involved in ribosome biogenesis and metabolism that, importantly, extend beyond canonical functions of Smc5/6. In addition, our analysis suggests a connection between Nse1 and RNA polymerase I (RNA Pol I) ubiquitination. Specifically, Nse1 and the Smc5/6 complex promote ubiquitination of K408 and K410 in the clamp domain of Rpa190, a modification that induces its degradation in response to blocks in transcriptional elongation. We propose that this mechanism contributes to Smc5/6-dependent segregation of the rDNA array, the locus transcribed by RNA Pol I.


Asunto(s)
ARN Polimerasa I , Ubiquitina , Secuencia de Aminoácidos , ARN Polimerasa I/metabolismo , Proteómica , Proteínas de Ciclo Celular/metabolismo , ARN , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Mol Microbiol ; 81(1): 232-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21542867

RESUMEN

Saccharomyces cerevisiae can import iron through a high-affinity system consisting of the Ftr1/Fet3-mediated reductive pathway and the siderophore-mediated non-reductive one. Expression of components of the high-affinity system is controlled by the Aft1 transcriptional factor. In this study we show that, upon oxidative stress, Aft1 is transitorily internalized into the nucleus, followed by transcription activation of components of its regulon. In these conditions, the mRNA levels of the genes of the non-reductive pathway become increased, while those of FTR1 and FET3 remain low because of destabilization of the mRNAs. Consequently, the respective protein levels also remain low. Such mRNA destabilization is mediated by the general 5'-3' mRNA decay pathway and is independent of the RNA binding protein Cth2. Yeast cells are hypersensitive to peroxides in growth conditions where only the high-affinity reductive pathway is functional for iron assimilation. On the contrary, peroxide does not affect growth when iron uptake occurs exclusively through the non-reductive pathway. This reinforces the idea that upon oxidative stress S. cerevisiae cells redirect iron assimilation through the non-reductive pathway to minimize oxidative damage by the ferrous ions, which are formed during iron import through the Ftr1/Fet3 complexes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Estabilidad del ARN , Regulón , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Ceruloplasmina/metabolismo , Peróxido de Hidrógeno/toxicidad , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxidantes/toxicidad
8.
J Fungi (Basel) ; 8(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35736104

RESUMEN

The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.

9.
J Biol Chem ; 285(53): 41653-64, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20956517

RESUMEN

The primary function of frataxin, a mitochondrial protein involved in iron homeostasis, remains controversial. Using a yeast model of conditional expression of the frataxin homologue YFH1, we analyzed the primary effects of YFH1 depletion. The main conclusion unambiguously points to the up-regulation of iron transport systems as a primary effect of YFH1 down-regulation. We observed that inactivation of aconitase, an iron-sulfur enzyme, occurs long after the iron uptake system has been activated. Decreased aconitase activity should be considered part of a group of secondary events promoted by iron overloading, which includes decreased superoxide dismutase activity and increased protein carbonyl formation. Impaired manganese uptake, which contributes to superoxide dismutase deficiency, has also been observed in YFH1-deficient cells. This low manganese content can be attributed to the down-regulation of the metal ion transporter Smf2. Low Smf2 levels were not observed in AFT1/YFH1 double mutants, indicating that high iron levels could be responsible for the Smf2 decline. In summary, the results presented here indicate that decreased iron-sulfur enzyme activities in YFH1-deficient cells are the consequence of the oxidative stress conditions suffered by these cells.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/química , Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , Aconitato Hidratasa/metabolismo , Proteínas de Transporte de Catión/metabolismo , Iones , Proteínas de Unión a Hierro/fisiología , Manganeso/química , Manganeso/metabolismo , Modelos Biológicos , Estrés Oxidativo , Consumo de Oxígeno , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba , Frataxina
10.
Nat Commun ; 12(1): 7013, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853311

RESUMEN

Post-translational modification of proteins by ubiquitin and ubiquitin-like modifiers, such as SUMO, are key events in protein homeostasis or DNA damage response. Smc5/6 is a nuclear multi-subunit complex that participates in the recombinational DNA repair processes and is required in the maintenance of chromosome integrity. Nse2 is a subunit of the Smc5/6 complex that possesses SUMO E3 ligase activity by the presence of a SP-RING domain that activates the E2~SUMO thioester for discharge on the substrate. Here we present the crystal structure of the SUMO E3 ligase Nse2 in complex with an E2-SUMO thioester mimetic. In addition to the interface between the SP-RING domain and the E2, the complex reveals how two SIM (SUMO-Interacting Motif) -like motifs in Nse2 are restructured upon binding the donor and E2-backside SUMO during the E3-dependent discharge reaction. Both SIM interfaces are essential in the activity of Nse2 and are required to cope with DNA damage.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Biomimética , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Daño del ADN , Procesamiento Proteico-Postraduccional , Proteostasis , Reparación del ADN por Recombinación , Proteínas Represoras , Ubiquitina , Ubiquitinación
11.
Biochim Biophys Acta ; 1780(11): 1217-35, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18178164

RESUMEN

Protein structure and function can be altered by reactive oxygen species produced either by cell metabolism or by external oxidants. Although catalases, superoxide dismutases and peroxidases contribute to maintaining non-toxic levels of reactive oxygen species, modification of amino acid side chains occurs. In particular, oxidative modification of sulphydryl groups in proteins can be a two-faceted process: it could lead to impairment of protein function or, depending on the redox state of cysteine residues, may activate specific pathways involved in regulating key cell functions. In yeast cells, the thioredoxin and glutaredoxin systems participate in such redox regulation in different cell compartments, and interplay exists between both systems. In this context, glutaredoxins with monothiol activity initially characterised in Saccharomyces cerevisiae may display specific regulatory functions at the mitochondria and nuclei. Furthermore, their structural conservation in other organisms point to a conserved important role in metal homeostasis also in higher eukaryotes. Control of gene expression in response to oxidative stress is mediated by several transcription factors, among which Yap1 has a predominant role in S. cerevisiae (Pap1 in Schizosaccharomyces pombe and Cap1 in Candida albicans). In combination with Gpx3 peroxidase and Ybp1 protein, the activity of Yap1 is itself controlled depending on the redox state of some of its cysteine residues, which determines the nucleocytoplasmic location of the Yap1 molecules.


Asunto(s)
Estrés Oxidativo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Humanos , Oxidación-Reducción , Proteínas Asociadas a Pancreatitis , Especies Reactivas de Oxígeno/metabolismo
12.
Cell Rep ; 22(9): 2421-2430, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490277

RESUMEN

Microorganisms evolved adaptive responses to survive stressful challenges in ever-changing environments. Understanding the relationships between the physiological/metabolic adjustments allowing cellular stress adaptation and gene expression changes being used by organisms to achieve such adjustments may significantly impact our ability to understand and/or guide evolution. Here, we studied those relationships during adaptation to various stress challenges in Saccharomyces cerevisiae, focusing on heat stress responses. We combined dozens of independent experiments measuring whole-genome gene expression changes during stress responses with a simplified kinetic model of central metabolism. We identified alternative quantitative ranges for a set of physiological variables in the model (production of ATP, trehalose, NADH, etc.) that are specific for adaptation to either heat stress or desiccation/rehydration. Our approach is scalable to other adaptive responses and could assist in developing biotechnological applications to manipulate cells for medical, biotechnological, or synthetic biology purposes.


Asunto(s)
Adaptación Fisiológica , Respuesta al Choque Térmico , Saccharomyces cerevisiae/fisiología , Evolución Molecular , Estudios de Factibilidad , Regulación Fúngica de la Expresión Génica , Genotipo , Concentración de Iones de Hidrógeno , Fenotipo , Saccharomyces cerevisiae/genética
13.
Mol Biol Cell ; 13(4): 1109-21, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11950925

RESUMEN

Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression of SSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas , Proteínas/metabolismo , Proteínas/fisiología , Secuencia de Aminoácidos , Antifibrinolíticos/farmacología , Western Blotting , ADN Complementario/metabolismo , Glutarredoxinas , Hierro/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Oxígeno/metabolismo , Péptidos/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Vitamina K 3/farmacología
14.
FEBS Lett ; 580(9): 2273-80, 2006 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-16566929

RESUMEN

The Saccharomyces cerevisiae monothiol glutaredoxin Grx5 participates in the mitochondrial biogenesis of iron-sulfur clusters. Grx5 homologues exist in organisms from bacteria to humans. Chicken (cGRX5) and human (hGRX5) homologues contain a mitochondrial targeting sequence, suggesting a mitochondrial localization for these two proteins. We have compartmentalized the Escherichia coli and Synechocystis sp. homologues, and also cGRX5 and hGRX5, in the mitochondrial matrix of a yeast grx5 mutant. All four heterologous proteins rescue the defects of the mutant. The chicken cGRX5 gene was significantly expressed throughout the embryo stages in different tissues. These results underline the functional conservation of Grx5 homologues throughout evolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pollos/genética , Escherichia coli/enzimología , Mitocondrias/enzimología , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae/enzimología , Synechocystis/enzimología , Animales , Proteínas Bacterianas/genética , Embrión de Pollo/citología , Embrión de Pollo/enzimología , Pollos/metabolismo , Escherichia coli/genética , Evolución Molecular , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Glutarredoxinas , Mitocondrias/genética , Mutación , Especificidad de Órganos/fisiología , Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Synechocystis/genética
15.
PLoS One ; 11(1): e0148204, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824473

RESUMEN

Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.


Asunto(s)
Adaptación Fisiológica/genética , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tristetraprolina/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Transporte Iónico/efectos de los fármacos , Factor de Apareamiento , Oxidación-Reducción , Estrés Oxidativo , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/metabolismo , Regulón/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo , Tristetraprolina/metabolismo
16.
PLoS One ; 6(2): e17272, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21364882

RESUMEN

We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25 °C to 37 °C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.


Asunto(s)
Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Estabilidad del ARN/fisiología , Transcripción Genética , Levaduras/genética , Levaduras/metabolismo , Secuencia de Bases , Análisis por Conglomerados , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Organismos Modificados Genéticamente , Estabilidad del ARN/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
17.
Curr Protein Pept Sci ; 11(8): 659-68, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21235502

RESUMEN

Glutaredoxins are defined as thiol disulfide oxidoreductases that reduce disulfide bonds employing reduced glutathione as electron donor. They constitute a complex family of proteins with a diversity of enzymatic and functional properties. Thus, dithiol glutaredoxins are able to reduce disulfide bonds and deglutathionylate mixed disulfides between glutathione and cysteine protein residues. They could act regulating the redox state of sulfhydryl residues of specific proteins, while thioredoxins (another family of thiol disulfide oxidoreductases which employ NADPH as electron donor) would be the general sulfhydryl reductants. Some dithiol glutaredoxins such as human Grx2 form dimers bridged by one iron-sulfur cluster, which acts as a sensor of oxidative stress, therefore regulating the activity of the glutaredoxin. The ability to interact with iron-sulfur clusters as ligands is also characteristic of monothiol glutaredoxins with a CGFS-type active site. These do not display thiol oxidoreductase activity, but have roles in iron homeostasis. The three members of this subfamily in Saccharomyces cerevisiae participate in the synthesis of the iron-sulfur clusters in mitochondria (Grx5), or in signalling the iron status inside the cell for regulation of iron uptake and intracellular iron relocalization (Grx3 and Grx4). Such a role in iron metabolism seems to be evolutionary conserved. Fungal cells also contain membrane-associated glutaredoxins structurally and enzymatically similar to dithiol glutaredoxins, which may act as redox regulators at the early stages of the protein secretory machinery.


Asunto(s)
Glutarredoxinas/química , Glutarredoxinas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Proteínas/metabolismo
18.
J Biol Chem ; 283(26): 17908-18, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18424442

RESUMEN

The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA level and transcription rate kinetics, and average mRNA decay rates have been calculated for each cluster. In most of the genes, changes in one or both experimentally determined parameters occur during the stress response. 24% of the genes are transcriptionally induced without an increase in mRNA levels. The lack of parallelism between the evolution of the mRNA amount and transcription rate predicts changes in mRNA stability during stress. Genes for ribosomal proteins and rRNA processing enzymes are abundant among those whose mRNAs are predicted to destabilize. The number of genes whose mRNAs are predicted to stabilize is lower, although some protein folding or proteasomal genes are among the latter. We have confirmed the mathematical predictions for several genes pertaining to different clusters by experimentally determining mRNA decay rates using the regulatable tetO promoter in transcriptional expression conditions not affected by the oxidative stress. This study indicates that the oxidative stress response in yeast cells is not only conditioned by gene transcription but also by the mRNA decay dynamics and that this complex response may be particularly relevant to explain the temporary down-regulation of protein synthesis occurring during stress.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Oxígeno/metabolismo , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Análisis por Conglomerados , Evolución Molecular , Cinética , Modelos Biológicos , Modelos Químicos , Estrés Oxidativo , ARN/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
19.
Photosynth Res ; 89(2-3): 127-40, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16915356

RESUMEN

Glutaredoxins (GRXs) can be subdivided into two subfamilies: dithiol GRXs with the CPY/FC active site motif, and monothiol GRXs with the CGFS motif. Both subfamilies share a thioredoxin-fold structure. Some monothiol GRXs exist with a single-Grx domain while others have a thioredoxin-like domain (Trx) and one or more Grx domains in tandem. Most fungi have both dithiol and monothiol GRXs with different subcellular locations. GRX-like molecules also exist in fungi that differ by one residue from one of the canonical active site motifs. Additionally, Omega-class glutathione transferases (GSTs) are active as GRXs. Among fungi, the GRXs more extensively studied are those from Saccharomyces cerevisiae. This organism contains two dithiol GRXs (ScGrx1 and ScGrx2) with partially overlapping functions in defence against oxidative stress. In this function, they cooperate with GSTs Gtt1 and Gtt2. While ScGrx1 is cytosolic, two pools exist for ScGrx2, a major one at the cytosol and a minor one at mitochondria. On the other hand, S. cerevisiae cells have two monothiol GRXs with the Trx-Grx structure (ScGrx3 and ScGrx4) that locate at the nucleus and probably regulate the activity of transcription factors such as Aft1, and one monothiol GRX with the Grx structure (ScGrx5) that localizes at the mitochondrial matrix, where it participates in the synthesis of iron-sulphur clusters. The function of yeast Grx5 seems to be conserved along the evolutionary scale.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxidorreductasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/genética , Oxidorreductasas/química , Oxidorreductasas/genética
20.
J Cell Sci ; 119(Pt 21): 4554-64, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17074835

RESUMEN

Grx3 and Grx4, two monothiol glutaredoxins of Saccharomyces cerevisiae, regulate Aft1 nuclear localisation. We provide evidence of a negative regulation of Aft1 activity by Grx3 and Grx4. The Grx domain of both proteins played an important role in Aft1 translocation to the cytoplasm. This function was not, however, dependent on the availability of iron. Here we demonstrate that Grx3, Grx4 and Aft1 interact each other both in vivo and in vitro, which suggests the existence of a functional protein complex. Interestingly, each interaction occurred independently on the third member of the complex. The absence of both Grx3 and Grx4 induced a clear enrichment of G1 cells in asynchronous cultures, a slow growth phenotype, the accumulation of intracellular iron and a constitutive activation of the genes regulated by Aft1. The grx3grx4 double mutant was highly sensitive to the oxidising agents hydrogen peroxide and t-butylhydroperoxide but not to diamide. The phenotypes of the double mutant grx3grx4 characterised in this study were mainly mediated by the Aft1 function, suggesting that grx3grx4 could be a suitable cellular model for studying endogenous oxidative stress induced by deregulation of the iron homeostasis. However, our results also suggest that Grx3 and Grx4 might play additional roles in the oxidative stress response through proteins other than Aft1.


Asunto(s)
Núcleo Celular/metabolismo , Estrés Oxidativo , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Northern Blotting , Ciclo Celular/fisiología , Regulación Fúngica de la Expresión Génica , Glutarredoxinas , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Hierro/metabolismo , Oxidantes/farmacología , Oxidación-Reducción , Oxidorreductasas/genética , Transporte de Proteínas , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/fisiología , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA