Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Mass Spectrom (Chichester) ; 23(2): 64-69, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28657413

RESUMEN

Recently, the formation of carbonyl compound within e-cigarettes usage has been reported. The aim of this study was to develop a new analytical method for the direct analysis of carbonyl compounds in vaporized liquids. Two different types of e-cigarettes and different puff's duration have been evaluated, using a modified smoking machine for vapor generation. An isotopic dilution approach, based on deuterated internal standard addition to the e-liquid before filling the e-cigarette tank, has been developed. Carbonyl compounds have been sampled in vapors using a direct, simple, solid-phase microextraction technique with on-fiber derivatization. Related oximes have been analyzed by gas chromatography/mass spectrometry technique. Results confirmed that new carbonyl compounds are formed during the vaping process, and that formation depends both from the heating device and from puffing topography.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cromatografía de Gases y Espectrometría de Masas/métodos , Gases/química , Compuestos Orgánicos/química , Técnica de Dilución de Radioisótopos/instrumentación , Microextracción en Fase Sólida/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Gases/análisis , Espectrometría de Masas/métodos , Compuestos Orgánicos/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Microextracción en Fase Sólida/métodos , Vapeo
2.
Rapid Commun Mass Spectrom ; 30(24): 2617-2627, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27706863

RESUMEN

RATIONALE: Nicotine and cotinine are, respectively, alkaloids produced mainly by the Solanaceae plant family, especially tobacco, and its most important human metabolite. These compounds are frequently found as contaminants in wastewater or landfill samples and they could be used to evaluate pollution by tobacco use. The aim of this study is to improve the knowledge about possible transformation pathways of nicotine and cotinine. This would help the identification of degradants by using HPLC coupled with a high resolving power mass analyzer (LTQ-Orbitrap). In addition, we evaluated toxicity on bioluminescent photobacteria to indicate possible relationships between the formation of transformation products and their toxic effects. METHODS: The transformation of nicotine and cotinine and the formation of intermediate products were evaluated adopting titanium dioxide as photocatalyst. The structural identification of photocatalytic transformation products of these two alkaloids was based on LC/multistage MS experiments. High-resolution MS allowed the elemental composition of these products to be hypothesized. The evolution of toxicity as a function of the irradiation time was also studied using a bioluminescent photobacterium (Vibrio fischeri) test. RESULTS: Several products were formed and characterized using HPLC/HRMSn . The main photocatalytic pathways involving nicotine and cotinine appear to be hydroxylation, demethylation and oxidation. Nine degradants were formed from nicotine, including cotinine. Seven degradants were generated from cotinine. There is no transformation product in common between the two studied molecules. CONCLUSIONS: The study of photocatalytic degradation allowed us to partially simulate human metabolism and the environmental transformation of the bioactive alkaloid nicotine. We searched for some of the identified transformation products in river water and landfill percolate by solid-phase extraction and HPLC/HRMS and eventually their presence was confirmed. These new findings could be of interest in further metabolism and environmental pollution studies. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Aliivibrio fischeri/metabolismo , Cotinina/metabolismo , Nicotina/metabolismo , Aliivibrio fischeri/efectos de la radiación , Biotransformación/efectos de los fármacos , Catálisis/efectos de la radiación , Cotinina/química , Luz , Espectrometría de Masas , Nicotina/química , Nicotiana/química
3.
EBioMedicine ; 90: 104535, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37001236

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS: We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS: Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION: We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING: INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Animales , Ratones , Femenino , Hormona Luteinizante , Hormona Antimülleriana , Imagen de Difusión Tensora , Hormona Liberadora de Gonadotropina , Neuroglía/patología
4.
Commun Biol ; 5(1): 541, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35662277

RESUMEN

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.


Asunto(s)
Actinas , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo
5.
Oxid Med Cell Longev ; 2020: 9219825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832010

RESUMEN

Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 µM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 µM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inhibidores de Agregación Plaquetaria/uso terapéutico , Ticagrelor/uso terapéutico , Animales , Humanos , Masculino , Oxidación-Reducción , Inhibidores de Agregación Plaquetaria/farmacología , Ratas , Ratas Wistar , Ticagrelor/farmacología
6.
Foods ; 7(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462917

RESUMEN

Interesterification is an industrial transformation process aiming to change the physico-chemical properties of vegetable oils by redistributing fatty acid position within the original constituent of the triglycerides. In the confectionery industry, controlling formation degree of positional isomers is important in order to obtain fats with the desired properties. Silver ion HPLC (High Performance Liquid Chromatography) is the analytical technique usually adopted to separate triglycerides (TAGs) having different unsaturation degrees. However, separation of TAG positional isomers is a challenge when the number of double bonds is the same and the only difference is in their position within the triglyceride molecule. The TAG positional isomers involved in the present work have a structural specificity that require a separation method tailored to the needs of confectionery industry. The aim of this work was to obtain a chromatographic resolution that might allow reliable qualitative and quantitative evaluation of TAG positional isomers within reasonably rapid retention times and robust in respect of repeatability and reproducibility. The resulting analytical procedure was applied both to confectionery raw materials and final products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA