Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Exp Cell Res ; 347(1): 42-51, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27423421

RESUMEN

Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Exocitosis , Oocitos/citología , Oocitos/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Caballos , Humanos , Metafase , Ratones , Microinyecciones , Proteínas Recombinantes de Fusión/metabolismo
2.
Heliyon ; 9(5): e15211, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37090429

RESUMEN

The population that has not received a SARS-CoV-2 vaccine is at high risk for infection whereas vaccination prevents COVID-19 severe disease, hospitalization, and death. In Argentina, to date, more than 50 million doses of vaccines against SARS-CoV-2 have been administered. The three main vaccines applied are Sputnik V, Oxford-AstraZeneca, and Sinopharm. In this study, we have compared the antibody response of voluntary individuals at day 0 (first dose vaccination day) and at 21-25 days post first and second dose. Our results indicate that at 21-25 days after the administration of the first doses of Sputnik V the large majority of the people vaccinated 80% (n = 15) presented high humoral responses as determined by the measurement of IgG against the Spike protein and the Receptor Binding Domain (RBD). In the case of those vaccinated with AstraZeneca, the percentage was 80% (n = 15) whereas this value was reduced to only 25% (n = 16) in persons that received Sinopharm. However, after the second doses, most of the recipients had significant levels of antibodies. The virus neutralizing capacity of the antibodies generated was evaluated using a pseudotyped VSV-SARS-CoV2 Spike expressing eGFP and the data was analyzed by fluorescence microscopy and flow cytometry. The results indicate that a good correlation exists between the levels of IgG and the neutralizing capacity of the antibodies against the recombinant virus. Our results stand out the importance of applying the second dose of Sinopharm. Thus, the present report provides data that will contribute to decisions making about the vaccine implementation plans of action for, not only our region but our country to support the fight against the COVID-19 global pandemic.

3.
PLoS One ; 10(8): e0135679, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267363

RESUMEN

Cortical granule exocytosis (CGE), also known as cortical reaction, is a calcium- regulated secretion that represents a membrane fusion process during meiotic cell division of oocytes. The molecular mechanism of membrane fusion during CGE is still poorly understood and is thought to be mediated by the SNARE pathway; nevertheless, it is unkown if SNAP (acronym for soluble NSF attachment protein) and NSF (acronym for N-ethilmaleimide sensitive factor), two key proteins in the SNARE pathway, mediate CGE in any oocyte model. In this paper, we documented the gene expression of α-SNAP, γ-SNAP and NSF in mouse oocytes. Western blot analysis showed that the expression of these proteins maintains a similar level during oocyte maturation and early activation. Their localization was mainly observed at the cortical region of metaphase II oocytes, which is enriched in cortical granules. To evaluate the function of these proteins in CGE we set up a functional assay based on the quantification of cortical granules metaphase II oocytes activated parthenogenetically with strontium. Endogenous α-SNAP and NSF proteins were perturbed by microinjection of recombinant proteins or antibodies prior to CGE activation. The microinjection of wild type α-SNAP and the negative mutant of α-SNAP L294A in metaphase II oocytes inhibited CGE stimulated by strontium. NEM, an irreversibly inhibitor of NSF, and the microinjection of the negative mutant NSF D1EQ inhibited cortical reaction. The microinjection of anti-α-SNAP and anti-NSF antibodies was able to abolish CGE in activated metaphase II oocytes. The microinjection of anti-γ SNAP antibody had no effect on CGE. Our findings indicate, for the first time in any oocyte model, that α-SNAP, γ-SNAP, and NSF are expressed in mouse oocytes. We demonstrate that α-SNAP and NSF have an active role in CGE and propose a working model.


Asunto(s)
Exocitosis/fisiología , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Oocitos/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Animales , Exocitosis/genética , Femenino , Fertilización In Vitro , Ratones , Proteínas Sensibles a N-Etilmaleimida/genética , Oocitos/citología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA