Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 293(28): 10963-10974, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789425

RESUMEN

Bone morphogenetic protein 9 (BMP9) and BMP10 are the two high-affinity ligands for the endothelial receptor activin receptor-like kinase 1 (ALK1) and are key regulators of vascular remodeling. They are both present in the blood, but their respective biological activities are still a matter of debate. The aim of the present work was to characterize their circulating forms to better understand how their activities are regulated in vivo First, by cotransfecting BMP9 and BMP10, we found that both can form a disulfide-bonded heterodimer in vitro and that this heterodimer is functional on endothelial cells via ALK1. Next, we developed an ELISA that could specifically recognize the BMP9-BMP10 heterodimer and which indicated its presence in both human and mouse plasma. In addition to using available Bmp9-KO mice, we generated a conditional Bmp10-KO mouse strain. The plasma from Bmp10-KO mice, similarly to that of Bmp9-KO mice, completely lacked the ability to activate ALK1-transfected 3T3 cells or phospho-Smad1-5 on endothelial cells, indicating that the circulating BMP activity is mostly due to the BMP9-BMP10 heterodimeric form. This result was confirmed in human plasma that had undergone affinity chromatography to remove BMP9 homodimer. Finally, we provide evidence that hepatic stellate cells in the liver could be the source of the BMP9-BMP10 heterodimer. Together, our findings demonstrate that BMP9 and BMP10 can heterodimerize and that this heterodimer is responsible for most of the biological BMP activity found in plasma.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Endotelio Vascular/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Multimerización de Proteína , Células 3T3 , Animales , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/química , Endotelio Vascular/citología , Factor 2 de Diferenciación de Crecimiento/sangre , Factor 2 de Diferenciación de Crecimiento/química , Factores de Diferenciación de Crecimiento/sangre , Factores de Diferenciación de Crecimiento/química , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
2.
J Clin Med ; 10(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072345

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.

3.
J Vis Exp ; (178)2021 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-35001913

RESUMEN

Metastasis is a leading cause of cancer death. Despite improvements in treatment strategies, metastatic cancer has a poor prognosis. We thus face an urgent need to understand the mechanisms behind metastasis development, and thus to propose efficient treatments for advanced cancer. Metastatic cancers are hard to treat, as biopsies are invasive and inaccessible. Recently, there has been considerable interest in liquid biopsies including both cell-free circulating deoxyribonucleic acid (DNA) and circulating tumor cells from peripheral blood and we have established several circulating tumor cell lines from metastatic colorectal cancer patients to participate in their characterization. Indeed, to functionally characterize these rare and poorly described cells, the crucial step is to expand them. Once established, circulating tumor cell (CTC) lines can then be cultured in suspension or adherent conditions. At the molecular level, CTC lines can be further used to assess the expression of specific markers of interest (such as differentiation, epithelial or cancer stem cells) by immunofluorescence or cytometry analysis. In addition, CTC lines can be used to assess drug sensitivity to gold-standard chemotherapies as well as to targeted therapies. The ability of CTC lines to initiate tumors can also be tested by subcutaneous injection of CTCs in immunodeficient mice. Finally, it is possible to test the role of specific genes of interest that might be involved in cancer dissemination by editing CTC genes, by short hairpin ribonucleic acid (shRNA) or Crispr/Cas9. Modified CTCs can thus be injected into immunodeficient mouse spleens, to experimentally mimic part of the metastatic development process in vivo. In conclusion, CTC lines are a precious tool for future research and for personalized medicine, where they will allow prediction of treatment efficiency using the very cells that are originally responsible for metastasis.


Asunto(s)
Células Neoplásicas Circulantes , Animales , Biomarcadores de Tumor , Recuento de Células , Línea Celular Tumoral , Humanos , Biopsia Líquida , Ratones , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología , Investigación Biomédica Traslacional
4.
Cancers (Basel) ; 13(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34638450

RESUMEN

Circulating tumor cells (CTCs) are promising diagnostic and prognostic tools for clinical use. In several cancers, including colorectal and breast, the CTC load has been associated with a therapeutic response as well as progression-free and overall survival. However, counting and isolating CTCs remains sub-optimal because they are currently largely identified by epithelial markers such as EpCAM. New, complementary CTC surface markers are therefore urgently needed. We previously demonstrated that a splice variant of CD44, CD44 variable alternative exon 6 (CD44v6), is highly and specifically expressed by CTC cell lines derived from blood samples in colorectal cancer (CRC) patients. Two different approaches-immune detection coupled with magnetic beads and fluorescence-activated cell sorting-were optimized to purify CTCs from patient blood samples based on high expressions of CD44v6. We revealed the potential of the CD44v6 as a complementary marker to EpCAM to detect and purify CTCs in colorectal cancer blood samples. Furthermore, this marker is not restricted to colorectal cancer since CD44v6 is also expressed on CTCs from breast cancer patients. Overall, these results strongly suggest that CD44v6 could be useful to enumerate and purify CTCs from cancers of different origins, paving the way to more efficacious combined markers that encompass CTC heterogeneity.

6.
PLoS One ; 13(11): e0206764, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30399175

RESUMEN

The clinically approved drug metformin has been shown to selectively kill persister cancer cells through mechanisms that are not fully understood. To provide further mechanistic insights, we developed a drug surrogate that phenocopies metformin and can be labeled in situ by means of click chemistry. Firstly, we found this molecule to be more potent than metformin in several cancer cell models. Secondly, this technology enabled us to provide visual evidence of mitochondrial targeting with this class of drugs. A combination of fluorescence microscopy and cyclic voltammetry indicated that metformin targets mitochondrial copper, inducing the production of reactive oxygen species in this organelle, mitochondrial dysfunction and apoptosis. Importantly, this study revealed that mitochondrial copper is required for the maintenance of a mesenchymal state of human cancer cells, and that metformin can block the epithelial-to-mesenchymal transition, a biological process that normally accounts for the genesis of persister cancer cells, through direct copper targeting.


Asunto(s)
Antineoplásicos/farmacología , Cobre/metabolismo , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Química Clic , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Metformina/química , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA