Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 22(1): 260, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022787

RESUMEN

BACKGROUND: Recent advances in tissue clearing techniques, combined with high-speed image acquisition through light sheet microscopy, enable rapid three-dimensional (3D) imaging of biological specimens, such as whole mouse brains, in a matter of hours. Quantitative analysis of such 3D images can help us understand how changes in brain structure lead to differences in behavior or cognition, but distinguishing densely packed features of interest, such as nuclei, from background can be challenging. Recent deep learning-based nuclear segmentation algorithms show great promise for automated segmentation, but require large numbers of accurate manually labeled nuclei as training data. RESULTS: We present Segmentor, an open-source tool for reliable, efficient, and user-friendly manual annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy images. Segmentor employs a hybrid 2D-3D approach for visualizing and segmenting objects and contains features for automatic region splitting, designed specifically for streamlining the process of 3D segmentation of nuclei. We show that editing simultaneously in 2D and 3D using Segmentor significantly decreases time spent on manual annotations without affecting accuracy as compared to editing the same set of images with only 2D capabilities. CONCLUSIONS: Segmentor is a tool for increased efficiency of manual annotation and refinement of 3D objects that can be used to train deep learning segmentation algorithms, and is available at https://www.nucleininja.org/ and https://github.com/RENCI/Segmentor .


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Algoritmos , Animales , Encéfalo , Imagenología Tridimensional , Ratones
2.
Sci Rep ; 13(1): 6118, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059819

RESUMEN

Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
3.
Stem Cell Res ; 54: 102421, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34130156

RESUMEN

The generation of induced pluripotent stem cells (iPSCs) from healthy individuals is an invaluable resource as reference control in disease modeling and drug discovery. This paper details the reprogramming of peripheral blood mononuclear cells (PBMCs) isolated from a healthy 27 years-old male using non-integration technology. The derived iPSCs displayed typical pluripotent stem cell morphology, the capacity to differentiate into the three germ layers, and normal karyotype. This iPSC line will be used as a reference control to study the Cerebral Cavernous Malformation disease mechanism.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular , Reprogramación Celular , Estratos Germinativos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Leucocitos Mononucleares , Masculino
4.
Nat Genet ; 53(7): 1006-1021, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34211179

RESUMEN

SPTBN1 encodes ßII-spectrin, the ubiquitously expressed ß-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal ßII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect ßII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of ßII-spectrin in the central nervous system.


Asunto(s)
Genes Dominantes , Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/genética , Espectrina/genética , Animales , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Ratones , Trastornos del Neurodesarrollo/diagnóstico , Fenotipo , Espectrina/metabolismo
5.
Stem Cell Res ; 49: 102015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33038744

RESUMEN

Induced pluripotent stem cells (iPSCs) generated from young, healthy individuals are valuable tools for investigating molecular disease mechanisms during the early development of the brain vasculature. We generated an iPSC line from peripheral blood mononuclear cells (PBMCs) isolated from a healthy 13-yeard old female donor using the Sendai virus. The iPSCs differentiated into endothelial cells, astrocytes, and neurons. This iPSC line can serve as a healthy reference control for comparative studies in drug development and modeling the early onset of Cerebral Cavernous Malformation (CCM).


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Endoteliales , Femenino , Humanos , Leucocitos Mononucleares , Virus Sendai/genética
6.
Bio Protoc ; 10(20): e3788, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659443

RESUMEN

Induced pluripotent stem cells (iPSCs) are genetically reprogrammed somatic cells that exhibit features identical to those of embryonic stem cells (ESCs). Multiple approaches are available to derive iPSCs, among which the Sendai virus is the most effective at reprogramming different cell types. Here we describe a rapid, efficient, safe, and reliable approach to reprogram human fibroblasts into iPSCs that are compatible with future iPSCs uses such as genome editing and differentiation to a transplantable cell type.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA