Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(23): 6647-6658, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38024299

RESUMEN

The present research focuses on the significance of thermophoretic particle deposition on a ZnO-SAE50 nanolubricant flow in a stretchable/shrinkable convergent/divergent channel in the presence of an applied magnetic field and nonlinear heat radiation. A parameter in the governing differential equations and wall boundary conditions defines the physical mechanism of the model. The Galerkin finite element method, combined with similarity transformation, is adopted to solve the governing equations. The Levenberg-Marquardt backpropagating algorithm of an artificial neural network model forecasts heat and mass transfer properties. The results reveal that by stretching/shrinking the walls enough, the classical flow and heat properties are significantly affected. The stretching of the convergent or divergent channel is observed to increase the velocity profiles, whilst shrinking results in backflow regions. In terms of the temperature field, stretching causes more heat to be produced in the flow; nevertheless, the thermal layer is decreased and cooling is attained by channel shrinkage, which may have important technical implications.

2.
Nanoscale Adv ; 5(21): 5941-5951, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37881708

RESUMEN

Non-Newtonian fluids have unique heat transfer properties compared to Newtonian fluids. The present study examines the flow of a Maxwell nanofluid across a rotating rough disk under the effect of a magnetic field. Furthermore, the Cattaneo-Christov heat flux model is adopted to explore heat transport features. In addition, a comparison of fluid flow without and with aggregation is performed. Using similarity variables, the governing partial differential equations are transformed into a system of ordinary differential equations, and this system is then solved by employing the Runge-Kutta Fehlberg fourth-fifth order method to obtain the numerical solution. Graphical depictions are used to examine the notable effects of various parameters on velocity and thermal profiles. The results reveal that an increase in the value of Deborah number decreases the velocity profile. An increase in the thermal relaxation time parameter decreases the thermal profile. An artificial neural network is employed to calculate the rate of heat transfer and surface drag force. The R values for skin friction and Nusselt number were computed. The results demonstrate that artificial neural networks accurately predicted skin friction and Nusselt number values.

3.
Biomimetics (Basel) ; 8(8)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38132513

RESUMEN

Evolutionary algorithms are a large class of optimization techniques inspired by the ideas of natural selection, and can be employed to address challenging problems. These algorithms iteratively evolve populations using crossover, which combines genetic information from two parent solutions, and mutation, which adds random changes. This iterative process tends to produce effective solutions. Inspired by this, the current study presents the results of thermal variation on the surface of a wetted wavy fin using a genetic algorithm in the context of parameter estimation for artificial neural network models. The physical features of convective and radiative heat transfer during wet surface conditions are also considered to develop the model. The highly nonlinear governing ordinary differential equation of the proposed fin problem is transmuted into a dimensionless equation. The graphical outcomes of the aspects of the thermal profile are demonstrated for specific non-dimensional variables. The primary observation of the current study is a decrease in temperature profile with a rise in wet parameters and convective-conductive parameters. The implemented genetic algorithm offers a powerful optimization technique that can effectively tune the parameters of the artificial neural network, leading to an enhanced predictive accuracy and convergence with the numerically obtained solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA