Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32938299

RESUMEN

Rationale: In addition to the overwhelming lung inflammation that prevails in COVID-19, hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in COVID-19 patients. Methods and Results: Blood was collected from 115 consecutive COVID-19 patients presenting non-severe (n=71) and severe (n=44) respiratory symptoms. We document the presence of SARS-CoV-2 RNA associated with platelets of COVID-19 patients. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both non-severe and severe COVID-19 patients, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both non-severe and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in non-severe, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting non-severe and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.

2.
Front Neurol ; 8: 567, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163333

RESUMEN

During the last two decades, 15 different genes have been reported to be responsible for the monogenic form of Parkinson's disease (PD), representing a worldwide frequency of 5-10%. Among them, 10 genes have been associated with autosomal recessive PD, with PRKN and PINK1 being the most frequent. In a cohort of 145 unrelated Moroccan PD patients enrolled since 2013, 19 patients were born from a consanguineous marriage, of which 15 were isolated cases and 4 familial. One patient was homozygous for the common LRRK2 G2019S mutation and the 18 others who did not carry this mutation were screened for exon rearrangements in the PRKN gene using Affymetrix Cytoscan HD microarray. Two patients were determined homozygous for PRKN exon-deletions, while another patient presented with compound heterozygous inheritance (3/18, 17%). Two other patients showed a region of homozygosity covering the 1p36.12 locus and were sequenced for the candidate PINK1 gene, which revealed two homozygous point mutations: the known Q456X mutation in exon 7 and a novel L539F variation in exon 8. The 13 remaining patients were subjected to next-generation sequencing (NGS) that targeted a panel of 22 PD-causing genes and overlapping phenotypes. NGS data showed that two unrelated consanguineous patients with juvenile-onset PD (12 and 13 years) carried the same homozygous stop mutation W258X in the ATP13A2 gene, possibly resulting from a founder effect; and one patient with late onset (76 years) carried a novel heterozygous frameshift mutation in SYNJ1. Clinical analysis showed that patients with the ATP13A2 mutation developed juvenile-onset PD with a severe phenotype, whereas patients having either PRKN or PINK1 mutations displayed early-onset PD with a relatively mild phenotype. By identifying pathogenic mutations in 45% (8/18) of our consanguineous Moroccan PD series, we demonstrate that the combination of chromosomal microarray analysis and NGS is a powerful approach to pinpoint the genetic bases of autosomal recessive PD, particularly in countries with a high rate of consanguinity.

3.
Parkinsons Dis ; 2017: 2412486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28465860

RESUMEN

Background. The LRRK2 G2019S mutation is the most common genetic determinant of Parkinson's disease (PD) identified to date. This mutation, reported in both familial and sporadic PD, occurs at elevated frequencies in Maghreb population. In the present study, we examined the prevalence of the G2019S mutation in the Moroccan population and we compared the motor and nonmotor phenotype of G2019S carriers to patients with idiopathic Parkinson's disease. Methods. 100 PD patients were assessed for motor and nonmotor symptoms, current medication, and motor complication including motor fluctuations and dyskinesia. The LRRK2 G2019S mutation was investigated by direct sequencing in patients and ethnically matched controls, all of Moroccan origin. Results. Among the 100 PD Moroccan patients, 41 (41%) were carriers of the G2019S mutation. The mutation frequency was higher among probands with autosomal dominant inheritance (76%) than among sporadic ones (28%). Interestingly, G2019S mutation was also found in 5% of control individuals. Clinically, patients carrying the G2019S mutation have more dystonia (OR = 4.6, p = 0.042) and more sleep disorders (OR = 2.4, p = 0.045) than noncarriers. Conclusions. The LRRK2 G2019S prevalence in Morocco is the highest in the world reported to date. Some clinical features in G2019S carriers such as dystonia and sleep disturbances are worth noting.

4.
PLoS One ; 12(7): e0181335, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28723952

RESUMEN

The most common cause of the monogenic form of Parkinson's disease known so far is the G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene. Its frequency varies greatly among ethnic groups and geographic regions ranging from less than 0.1% in Asia to 40% in North Africa. This mutation has three distinct haplotypes; haplotype 1 being the oldest and most common. Recent studies have dated haplotype 1 of the G2019S mutation to about 4000 years ago, but it remains controversial whether the mutation has a Near-Eastern or Moroccan-Berber ancestral origin. To decipher this evolutionary history, we genotyped 10 microsatellite markers spanning a region of 11.27 Mb in a total of 57 unrelated Moroccan PD patients carrying the G2019S mutation for which the Berber or Arab origin was established over 3 generations based on spoken language. We estimated the age of the most recent common ancestor for the 36 Arab-speaking and the 15 Berber-speaking G2019S carriers using the likelihood-based method with a mutation rate of 10-4. Data analysis suggests that the shortest haplotype originated in a patient of Berber ethnicity. The common founder was estimated to have lived 159 generations ago (95% CI 116-224) for Arab patients, and 200 generations ago (95% CI 123-348) for Berber patients. Then, 29 native North African males carrying the mutation were assessed for specific uniparental markers by sequencing the Y-chromosome (E-M81, E-M78, and M-267) and mitochondrial DNA (mtDNA) hypervariable regions (HV1 and HV2) to examine paternal and maternal contributions, respectively. Results showed that the autochthonous genetic component reached 76% for mtDNA (Eurasian and north African haplogroups) and 59% for the Y-chromosome (E-M81 and E-M78), suggesting that the G2019S mutation may have arisen in an autochthonous DNA pool. Therefore, we conclude that LRRK2 G2019S mutation most likely originated in a Berber founder who lived at least 5000 years ago (95% CI 3075-8700).


Asunto(s)
Árabes/genética , Haplotipos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Adulto , África del Norte , Anciano , Anciano de 80 o más Años , ADN Mitocondrial , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Persona de Mediana Edad , Mutación
5.
Biomed Res Int ; 2016: 3460234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27413743

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Ten of fifteen causative genes linked to familial forms of PD have been reported to cause autosomal recessive forms. Among them, mutations in the PTEN-induced kinase 1 (PINK1) gene were shown to be responsible for a phenotype characterized by early onset, good response to levodopa, and a benign course. Using chromosomal microarray analysis and Sanger sequencing, we identified a homozygous G/C substitution in a 58-year-old Moroccan man diagnosed with recessive inherited Parkinson's disease. This G-to-C transition occurred at position 1617 leading to an amino acid change L/F at position 539 located in highly conserved motif in the C terminal sequence of PINK1. Interestingly, the c.1617G>C substitution is absent in 192 ethnically matched control chromosomes. Our findings have shown that the p.L539F is a novel mutation located in the C terminal sequence of the PINK1 protein that could be pathogenic and responsible for a clinical phenotype resembling idiopathic Parkinson's disease with rapid progression and early cognitive impairment.


Asunto(s)
Mutación , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Secuencias de Aminoácidos , Cromosomas/ultraestructura , Trastornos del Conocimiento/genética , Biología Computacional , Progresión de la Enfermedad , Exones , Homocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Marruecos , Mutación Missense , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad de Parkinson/tratamiento farmacológico , Linaje , Fenotipo , Dominios Proteicos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA