RESUMEN
During embryogenesis, the dorsal roof plate and the ventral floor plate (FP) act as organizing centers to pattern the developing neural tube. Organizer-secreted morphogens provide signals that are interpreted via the graded expression of transcription factors. These factors establish a combinatorial code, which subsequently determines the fate of neuronal progenitors along the dorsoventral axis. To further separate the fates and promote distinct identities of the neural progenitors, mutual repression takes place among transcription factors expressed in progenitors situated along the dorsoventral axis. The molecular mechanisms acting in the developing spinal cord and underlying the segregation of the progenitor pool containing cells with a mixed FP/p3 fate into separate FP cells and V3 neurons are not fully understood. Using in vivo ectopic expression in chick, we found that Nato3 induces ectopic Foxa2-positive cells and indirectly downregulates Nkx2.2 expression. To examine the role of Nato3 in the FP, Foxa2-Nato3 signaling was blocked in Nato3 null mice and to a greater extent in Nato3 null/Foxa2 heterozygous bigenic mutants. Complementary to the findings obtained by gain of function in chick, the loss of function in mouse indicated that the segregation of the FP/p3 population into its derivatives was interrupted. Together, the data suggest that Nato3 is a novel determinant factor regulating the segregation of the FP and p3 identities, which is an essential step for establishing a definitive FP fate in the embryonic spinal cord.
Asunto(s)
Tipificación del Cuerpo , Linaje de la Célula , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/citología , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Proliferación Celular , Embrión de Pollo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Tubo Neural/embriología , Tubo Neural/metabolismo , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas de Pez CebraRESUMEN
Distal limb deformities are congenital malformations with phenotypic variability, genetic heterogeneity and complex inheritance. Among these, split-hand/foot malformation is an ectrodactyly with missing central fingers, yielding a lobster claw-like hand, which when combined with long-bone deficiency is defined as split-hand/foot malformation and long-bone deficiency (SHFLD) that is genetically heterogeneous. Copy number variation (CNV) consisting of 17p13.3 duplication was identified in unrelated pedigrees, underlying SHFLD3 (OMIM 612576). Although the transcription factor Fingerin (bHLHA9) is the only complete gene in the critical region, its biological role is not yet known and there are no data supporting its involvement in mammalian limb development. We have generated knockout mice in which only the entire coding region of Fingerin was deleted, and indeed found that most null mice display some limb defects. These include various levels of simple asymmetrical syndactyly, characterized by webbed fingers, generated by incomplete separation of soft, but not skeletal, tissues between forelimb digits 2 and 3. As expected, hand pads of Fingerin null embryos exhibited reduced apoptosis between digital rays 2 and 3. This defect was shown to cause syndactyly when the same limbs were grown ex vivo following the apoptosis assay. Extrapolating from mouse data, we suggest that Fingerin loss-of-function in humans may underlie MSSD syndactyly (OMIM 609432), which was mapped to the same locus. Taken together, Fingerin gene dosage links two different congenital limb malformations, syndactyly and ectrodactyly, which were previously postulated to share a common etiology. These results add limb disorders to the growing list of diseases resulting from CNV.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dedos/anomalías , Deformidades Congénitas de las Extremidades/genética , Sindactilia/genética , Animales , Apoptosis , Células Cultivadas , Femenino , Miembro Anterior/anomalías , Dosificación de Gen , Humanos , Deformidades Congénitas de las Extremidades/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales , Sindactilia/patologíaRESUMEN
The development of the neural tube into a complex central nervous system involves morphological, cellular and molecular changes, all of which are tightly regulated. The floor plate (FP) is a critical organizing center located at the ventral-most midline of the neural tube. FP cells regulate dorsoventral patterning, differentiation and axon guidance by secreting morphogens. Here we show that the bHLH transcription factor Nato3 (Ferd3l) is specifically expressed in the spinal FP of chick and mouse embryos. Using in ovo electroporation to understand the regulation of the FP-specific expression of Nato3, we have identified an evolutionarily conserved 204 bp genomic region, which is necessary and sufficient to drive expression to the chick FP. This promoter contains two Foxa2-binding sites, which are highly conserved among distant phyla. The two sites can bind Foxa2 in vitro, and are necessary for the expression in the FP in vivo. Gain and loss of Foxa2 function in vivo further emphasize its role in Nato3 promoter activity. Thus, our data suggest that Nato3 is a direct target of Foxa2, a transcription activator and effector of Sonic hedgehog, the hallmark regulator of FP induction and spinal cord development. The identification of the FP-specific promoter is an important step towards a better understanding of the molecular mechanisms through which Nato3 transcription is regulated and for uncovering its function during nervous system development. Moreover, the promoter provides us with a powerful tool for conditional genetic manipulations in the FP.
Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/anatomía & histología , Tubo Neural/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Embrión de Pollo , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas Represoras , Alineación de Secuencia , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Factores de Transcripción/genéticaRESUMEN
C-LTMRs are known to convey affective aspects of touch and to modulate injury-induced pain in humans and mice. However, a role for these neurons in temperature sensation has been suggested, but not fully demonstrated. Here, we report that deletion of C-low-threshold mechanoreceptor (C-LTMR)-expressed bhlha9 causes impaired thermotaxis behavior and exacerbated formalin-evoked pain in male, but not female, mice. Positive modulators of GABAA receptors failed to relieve inflammatory formalin pain and failed to decrease the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) selectively in bhlha9 knockout (KO) males. This could be explained by a drastic change in the GABA content of lamina II inner inhibitory interneurons contacting C-LTMR central terminals. Finally, C-LTMR-specific deep RNA sequencing revealed more genes differentially expressed in male than in female bhlha9 KO C-LTMRs. Our data consolidate the role of C-LTMRs in modulation of formalin pain and provide in vivo evidence of their role in the discriminative aspects of temperature sensation.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Dolor/patología , Caracteres Sexuales , Taxia , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Formaldehído , Ganglios Espinales/patología , Regulación de la Expresión Génica , Interneuronas/metabolismo , Masculino , Mecanorreceptores/metabolismo , Ratones Noqueados , Médula Espinal/patología , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Cerebellar granule cells, the most abundant neurons in the mammalian brain, arise in the rhombic lip located at the roof of the brain's fourth ventricle. Bordering the rhombic lip is the choroid plexus, a non-neuronal structure, composed of blood vessels enveloped by epithelial cells. Here, we show a striking decrease in neural differentiation of rhombic lip-derived cells, which failed to extend neuritic processes and attenuate Math1 promoter activity, when co-cultured with choroid plexus cells. Moreover, a blocking antibody against BMP7, a morphogenetic protein expressed in the choroid plexus, blocked the inhibitory effect of the choroid plexus, whereas purified BMP7 mimicked this effect, demonstrating causal involvement of BMP. On the other hand, the BMP antagonist NBL1 promoted neurogenesis in rhombic lip cultures from Math1 null mice displaying arrested differentiation. Our data indicate that besides its secretory and barrier functions, the choroid plexus has a novel role in attenuating the differentiation of adjacent neural progenitors.
Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cerebelo/embriología , Plexo Coroideo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína Morfogenética Ósea 7 , Proteínas de Ciclo Celular , Diferenciación Celular , Cerebelo/citología , Cerebelo/metabolismo , Plexo Coroideo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Modelos Neurológicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
During embryonic development of the Central Nervous System (CNS), the expression of the bHLH transcription factor Nato3 (Ferd3l) is unique and restricted to the floor plate of the neural tube. In mice lacking Nato3 the floor plate cells of the spinal cord do not fully mature, whereas in the midbrain floor plate, progenitors lose some neurogenic activity, giving rise to a reduced population of dopaminergic neurons. Since the floor plate is considered to be disintegrated at the time of birth, Nato3 expression was never tested postnatally and in adult mice. Here, we utilized a Nato3 knockout mouse model in which a LacZ reporter precisely replaced the coding region under the endogenous regulatory elements, so that its expression recapitulates the spatiotemporal pattern of Nato3 expression. Nato3 was found to be expressed in the CNS throughout life in a highly restricted manner along the medial cavities: in subpopulations of cells in the IIIrd ventricle, the cerebral aqueduct, the IVth ventricle, the central canal of the spinal cord, and the subcommissural organ, a gland located in the midbrain. A few unifying themes are shared among all Nato3-positive cells: all are positioned in the midline, are of an ependymal type, and contact the cerebrospinal fluid (CSF) similarly to the embryonic position of the floor plate bordering the lumen of the neural tube. Taken together, Nato3 defines an unrecognized subpopulation of medial cells positioned at only one side of circular ependymal structures, and it may affect their regulatory activities and neuronal stem cell function.
Asunto(s)
Sistema Nervioso Central/fisiología , Epéndimo/fisiología , Regulación del Desarrollo de la Expresión Génica , Animales , Diferenciación Celular , Líquido Cefalorraquídeo/metabolismo , Operón Lac , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/fisiología , Neurogénesis , Neuronas/metabolismo , Proteínas Represoras , Médula Espinal/embriología , Células Madre/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismoRESUMEN
The basic helix-loop-helix (bHLH) transcription factor Math1 and its orthologs are fundamental for proper development of various neuronal subpopulations, such as cerebellar granule cells, D1 interneurons in the spinal cord, and inner ear hair cells. Although crucial for neurogenesis, the mechanisms by which Math1 specifically recognizes its direct targets are not fully understood. To search for direct and indirect target genes and signaling pathways controlled by Math1, we analyzed the effect of Math1 knockout on the expression profile of multiple genes in the embryonic cerebellum. Eighteen differentially expressed transcripts were identified and found to belong to a few developmentally-related functional groups, such as transcriptional regulation, proliferation, organogenesis, signal transduction, and apoptosis. Importantly, genomic analysis of E-box motifs has identified a significant enrichment and clustering of MATH1-binding E-boxes only in a subset of differentially expressed genes (Nr2f6, Hras1, and Hes5) in both mouse and man. Moreover, Math1 was shown by chromatin immunoprecipitation (ChIP) to bind, and by a luciferase reporter assay to activate transcription, of an upstream genomic fragment of Nr2f6. Taken together, we propose that when putative direct targets of Math1 are being selected for detailed studies on DNA microarray hybridization, the enrichment and clustering of binding E-boxes in multiple species may be helpful criteria. Our findings may be useful to the study of other bHLH transcription factors, many of which control the development of the nervous system.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos E-Box , Evolución Molecular , Regulación de la Expresión Génica , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Factores de Transcripción COUP , Cerebelo/citología , Cerebelo/embriología , Cerebelo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/anatomía & histología , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas RepresorasRESUMEN
Growing evidence indicates that cell cycle arrest and neurogenesis are highly coordinated and interactive processes, governed by cell cycle genes and neural transcription factors. The gene PC3 (Tis21/BTG2) is expressed in the neuroblast throughout the neural tube and inhibits cell cycle progression at the G1 checkpoint by repressing cyclin D1 transcription. We generated inducible mouse models in which the expression of PC3 was upregulated in neuronal precursors of the neural tube and of the cerebellum. These mice exhibited a marked increase in the production of postmitotic neurons and impairment of cerebellar development. Cerebellar granule precursors of PC3 transgenic mice displayed inhibition of cyclin D1 expression and a strong increase in the expression of Math1, a transcription factor required for their differentiation. Furthermore, PC3, encoded by a recombinant adenovirus, also induced Math1 in postmitotic granule cells in vitro and stimulated the Math1 promoter activity. In contrast, PC3 expression was unaffected in the cerebellar primordium of Math1 null mice, suggesting that PC3 acts upstream to Math1. As a whole, our data suggest that cell cycle exit of cerebellar granule cell precursors and the onset of cerebellar neurogenesis are coordinated by PC3 through transcriptional control of cyclin D1 and Math1, respectively.
Asunto(s)
Ciclo Celular/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Neuronas/metabolismo , Factores de Transcripción/biosíntesis , Animales , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/genética , División Celular/fisiología , Células Cultivadas , Cerebelo/citología , Cerebelo/embriología , Cerebelo/metabolismo , Enanismo/genética , Regulación de la Expresión Génica/fisiología , Genes Letales , Genes Supresores de Tumor , Humanos , Proteínas Inmediatas-Precoces/genética , Ratones , Ratones Transgénicos , Neuronas/citología , Fenotipo , Ratas , Ratas Wistar , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor , Regulación hacia ArribaRESUMEN
Long-chain neurotoxins derived from the venom of the Buthidae scorpions, which affect voltage-gated sodium channels (VGSCs) can be subdivided according to their toxicity to insects into insect-selective excitatory and depressant toxins (beta-toxins) and the alpha-like toxins which affect both mammals and insects. In the present study by the aid of reverse-phase HPLC column chromatography, RT-PCR, cloning and various toxicity assays, a new insect selective toxin designated as BjalphaIT was isolated from the venom of the Judean Black Scorpion (Buthotus judaicus), and its full primary sequence was determined: MNYLVVICFALLLMTVVESGRDAYIADNLNCAYTCGSNSYCNTECTKNGAVSGYCQWLGKYGNACWCINLPDKVPIRIPGACR (leader sequence is underlined). Despite its lack of toxicity to mammals and potent toxicity to insects, BjalphaIT reveals an amino acid sequence and an inferred spatial arrangement that is characteristic of the well-known scorpion alpha-toxins highly toxic to mammals. BjalphaITs sharp distinction between insects and mammals was also revealed by its effect on sodium conductance of two cloned neuronal VGSCs heterloguously expressed in Xenopus laevis oocytes and assayed with the two-electrode voltage-clamp technique. BjalphaIT completely inhibits the inactivation process of the insect para/tipE VGSC at a concentration of 100 nM, in contrast to the rat brain Na(v)1.2/beta1 which is resistant to the toxin. The above categorical distinction between mammal and insect VGSCs exhibited by BjalphaIT enables its employment in the clarification of the molecular basis of the animal group specificity of scorpion venom derived neurotoxic polypeptides and voltage-gated sodium channels.
Asunto(s)
Venenos de Escorpión/química , Venenos de Escorpión/aislamiento & purificación , Escorpiones/química , Secuencia de Aminoácidos , Animales , Insectos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Venenos de Escorpión/genética , Escorpiones/genética , Especificidad de la EspecieRESUMEN
Knockout mice are widely used in all fields of biomedical research. Determining the genotype of every newborn mouse is a tedious task, usually performed by Southern blot hybridization or Polymerase Chain Reaction (PCR). We describe here a quick and simple genotype identification assay based on real-time PCR and SYBR Green I dye, without using fluorescent primers. The discrimination between the wild type and targeted alleles is based on a PCR design that leads to a different melting temperature for each product. The identification of the genotype is obvious immediately after amplification, and no post-PCR manipulations are needed, reducing cost and time. Therefore, while the real-time PCR amplification increases the sensitivity, the fact that the reactions tubes are never opened after amplification, reduces the risk of contamination and eliminates errors, which are common during the repeated handling of dozens of samples from the same mouse line. The protocol we provide was tested on Math1 knockout mice, but is general, and may be utilized for any knockout line and real-time thermocycler, without any further modification, accessories or special reagents.
Asunto(s)
Ratones Noqueados/genética , Biología Molecular/métodos , Malformaciones del Sistema Nervioso/genética , Compuestos Orgánicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Transcripción/deficiencia , Alelos , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Benzotiazoles , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , ADN/análisis , ADN/genética , Diaminas , Genes Reporteros/genética , Genotipo , Operón Lac/genética , Ratones , Ratones Noqueados/crecimiento & desarrollo , Biología Molecular/instrumentación , Quinolinas , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Factores de Transcripción/genéticaRESUMEN
Mesencephalic dopaminergic (mesDA) neurons originate from the floor plate of the midbrain, a transient embryonic organizing center located at the ventral-most midline. Since the loss of mesDA leads to Parkinson's disease, the molecular mechanisms controlling the genesis and differentiation of dopaminergic progenitors are extensively studied and the identification and characterization of new genes is of interest. Here, we show that the expression of the basic helix-loop-helix transcription factor Nato3 (Ferd3l) increases in parallel to the differentiation of SN4741 dopaminergic cells in vitro. Nato3 transcription is directly regulated by the transcription factor Foxa2, a target and effector of the Sonic hedgehog (Shh) signaling cascade. Moreover, pharmacological inhibition of Shh signaling downregulated the expression of Nato3, thus defining Nato3 as a novel component of one of the major pathways controlling cell patterning and generation of mesDA. Furthermore, we show that Nato3 regulated Shh and Foxa2 through a novel feed-backward loop. Up- and downregulation of Nato3 further affected the transcription of Nurr1, implicated in the genesis of mesDA, but not of TH. Taken together, these data shed new light on the transcriptional networks controlling the generation of mesDA and may be utilized in the efforts to direct stem cells towards a dopaminergic fate.
Asunto(s)
Diferenciación Celular/genética , Neuronas Dopaminérgicas/metabolismo , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesencéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Neuronas Dopaminérgicas/citología , Retroalimentación Fisiológica , Proteínas Hedgehog/genética , Factor Nuclear 3-beta del Hepatocito/genética , Mesencéfalo/citología , Ratones , Proteínas del Tejido Nervioso/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Represoras , Factores de Transcripción/genéticaAsunto(s)
Embriología/métodos , Galactósidos/farmacología , Regulación del Desarrollo de la Expresión Génica , Técnicas Genéticas , Indoles/farmacología , Animales , Compuestos Cromogénicos/farmacología , Colorantes/farmacología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Heterocigoto , Ratones , Ratones Noqueados , Ratones Transgénicos , Fotograbar , Coloración y Etiquetado , Factores de Tiempo , TransgenesRESUMEN
Cerebellar granule cells (CGC) are the most abundant neurons in the mammalian brain, and an important tool for unraveling molecular mechanisms underlying neurogenesis. Math1 is a bHLH transcription activator that is essential for the genesis of CGC. To delineate the effects of Math1 on CGC differentiation, we generated and studied primary cultures of CGC progenitors from Math1/lacZ knockout mice. Rhombic lip precursors appeared properly positioned, expressed CGC-specific markers, and maintained Math1 promoter activity in vivo and in vitro, suggesting that Math1 is not essential for the initial stages of specification or survival of CGC. Moreover, the continuous activity of Math1 promoter in the absence of MATH1, indicated that MATH1 was not necessary for the activation of its own expression. After 6, but not 3, days in culture, Math1 promoter activity was downregulated in control cultures, but not in cells from Math1 null mice, thus implying that Math1 participates in a negative regulatory feedback loop that is dependent on increased levels of MATH1 generated through the positive autoregulatory feedback loop. In addition, Math1 null CGC did not differentiate properly in culture, and were unable to extend processes. All Notch signaling pathway receptors and ligands tested were expressed in the rhombic lip at embryonic date 14, with highest levels of Notch2 and Jag1. However, Math1-null rhombic lip cells presented conspicuous downregulation of Notch4 and Dll1. Moreover, of the two transcriptional repressors known to antagonize Math1, Hes5 (but not Hes1) was downregulated in Math1-null rhombic lip tissue and primary cultures, and was shown to bind MATH1, thus revealing a negative regulatory feedback loop. Taken together, our data demonstrate that CGC differentiation, but not specification, depends on Math1, which acts by regulating the level of multiple components of the Notch signaling pathway.
Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/embriología , Proteínas de la Membrana/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/fisiología , Ligandos , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Noqueados , Receptores Notch , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Células Madre/fisiologíaRESUMEN
To explore neuronal mechanisms underlying long-term consequences of stress, we studied stress-induced changes in the neuritic translocation of acetylcholinesterase (AChE) splice variants. Under normal conditions, we found the synaptic AChE-S mRNA and protein in neurites. Corticosterone, anticholinesterases, and forced swim, each facilitated a rapid (minutes), yet long-lasting (weeks), shift from AChE-S to the normally rare AChE-R mRNA, promoted AChE-R mRNA translocation into neurites, and induced enzyme secretion. Weeks after stress, electrophysiological measurements in hippocampus slices displayed apparently normal evoked synaptic responses but extreme hypersensitivity to both anticholinesterases and atropine. Our findings suggest that neuronal hypersensitivity under stress involves neuritic replacement of AChE-S with AChE-R.