Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37190183

RESUMEN

Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.

2.
Cells ; 12(19)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37830552

RESUMEN

PD-L1 has been characterized as an inhibitory immune checkpoint, leading to the suppression of potential anti-tumor immune activities in many cancer types. In view of the relatively limited efficacy of immune checkpoint blockades against PD-L1 in breast cancer, our recent study addressed the possibility that in addition to its immune-inhibitory functions, PD-L1 promotes the pro-metastatic potential of the cancer cells themselves. Indeed, our published findings demonstrated that PD-L1 promoted pro-metastatic functions of breast cancer cells in a cell-autonomous manner, both in vitro and in vivo. These functions fully depended on the integrity of the S283 intracellular residue of PD-L1. Here, using siRNAs and the S283A-PD-L1 variant, we demonstrate that the cell-autonomous pro-metastatic functions of PD-L1-tumor cell proliferation and invasion, and release of the pro-metastatic chemokine CXCL8-required the activation of STAT3 and STAT1 in luminal A and triple-negative breast cancer cells. The cell-autonomous pro-metastatic functions of PD-L1 were potently impaired upon inhibition of N-linked glycosylation (kifunensine). Site-specific mutants at each of the N-linked glycosylation sites of PD-L1 (N35, N192, N200, and N219) revealed that they were all required for PD-L1-induced pro-metastatic functions to occur; the N219 site was the main regulator of STAT3 and STAT1 activation, with accompanying roles for N192 and N200 (depending on the cell type). Using a T cell-independent mouse system, we found that cells expressing N35A-PD-L1 and N219A-PD-L1 had a significantly lower tumorigenic and metastatic potential than cells expressing WT-PD-L1. TCGA analyses revealed significant associations between reduced survival and high levels of α-mannosidase II (inferring on N-linked glycosylation) in breast cancer patients. These findings suggest that N-linked glycosylation of PD-L1 may be used to screen for patients who are at greater risk of disease progression, and that modalities targeting N-linked glycosylated PD-L1 may lead to the inhibition of its cell-autonomous pro-metastatic functions and to lower tumor progression in breast cancer.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Glicosilación , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/patología , Linfocitos T , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
Cells ; 10(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072893

RESUMEN

Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1ß (IL-1ß) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1ß stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1ß stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-kB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1ß in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Mediadores de Inflamación/farmacología , Inflamación/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Citocinas/genética , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806906

RESUMEN

The pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1ß (IL-1ß) are expressed simultaneously and have tumor-promoting roles in breast cancer. In parallel, mesenchymal stem cells (MSCs) undergo conversion at the tumor site to cancer-associated fibroblasts (CAFs), which are generally connected to enhanced tumor progression. Here, we determined the impact of consistent inflammatory stimulation on stromal cell plasticity. MSCs that were persistently stimulated by TNFα + IL-1ß (generally 14-18 days) gained a CAF-like morphology, accompanied by prominent changes in gene expression, including in stroma/fibroblast-related genes. These CAF-like cells expressed elevated levels of vimentin and fibroblast activation protein (FAP) and demonstrated significantly increased abilities to contract collagen gels. Moreover, they gained the phenotype of inflammatory CAFs, as indicated by the reduced expression of α smooth muscle actin (αSMA), increased proliferation, and elevated expression of inflammatory genes and proteins, primarily inflammatory chemokines. These inflammatory CAFs released factors that enhanced tumor cell dispersion, scattering, and migration; the inflammatory CAF-derived factors elevated cancer cell migration by stimulating the chemokine receptors CCR2, CCR5, and CXCR1/2 and Ras-activating receptors, expressed by the cancer cells. Together, these novel findings demonstrate that chronic inflammation can induce MSC-to-CAF conversion, leading to the generation of tumor-promoting inflammatory CAFs.

5.
Front Oncol ; 10: 614468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585241

RESUMEN

Cellular heterogeneity poses an immense therapeutic challenge in cancer due to a constant change in tumor cell characteristics, endowing cancer cells with the ability to dynamically shift between states. Intra-tumor heterogeneity is largely driven by cancer cell plasticity, demonstrated by the ability of malignant cells to acquire stemness and epithelial-to-mesenchymal transition (EMT) properties, to develop therapy resistance and to escape dormancy. These different aspects of cancer cell remodeling are driven by intrinsic as well as by extrinsic signals, the latter being dominated by factors of the tumor microenvironment. As part of the tumor milieu, chronic inflammation is generally regarded as a most influential player that supports tumor development and progression. In this review article, we put together recent findings on the roles of inflammatory elements in driving forward key processes of tumor cell plasticity. Using breast cancer as a representative research system, we demonstrate the critical roles played by inflammation-associated myeloid cells (mainly macrophages), pro-inflammatory cytokines [such as tumor necrosis factor α (TNFα) and interleukin 6 (IL-6)] and inflammatory chemokines [primarily CXCL8 (interleukin 8, IL-8) and CXCL1 (GROα)] in promoting tumor cell remodeling. These inflammatory components form a common thread that is involved in regulation of the three plasticity levels: stemness/EMT, therapy resistance, and dormancy. In view of the fact that inflammatory elements are a common denominator shared by different aspects of tumor cell plasticity, it is possible that their targeting may have a critical clinical benefit for cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA