Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(1): 12-17, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25815980

RESUMEN

Nutrition presents unanswered scientific questions of high public health importance. We envision model systems composed of interacting gastrointestinal and metabolic tissues derived from human embryonic stem cells, populated by gut microbiota. The culture will be embedded in 3D scaffolds, creating a controlled experimental system that enables tissue sampling and imaging.


Asunto(s)
Células Madre Embrionarias/citología , Tracto Gastrointestinal/fisiología , Modelos Biológicos , Animales , Dieta , Tracto Gastrointestinal/microbiología , Humanos , Modelos Animales , Fenómenos Fisiológicos de la Nutrición
2.
Cell ; 150(5): 1016-28, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939625

RESUMEN

Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that a sharp Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Spätzle. Shuttling may represent a general paradigm for patterning early embryos.


Asunto(s)
Drosophila/embriología , Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Animales , Tipificación del Cuerpo , Proteínas de Drosophila , Mesodermo , Sulfotransferasas
3.
Proc Natl Acad Sci U S A ; 120(44): e2308511120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871201

RESUMEN

The immune system is a complex network of cells with critical functions in health and disease. However, a comprehensive census of the cells comprising the immune system is lacking. Here, we estimated the abundance of the primary immune cell types throughout all tissues in the human body. We conducted a literature survey and integrated data from multiplexed imaging and methylome-based deconvolution. We also considered cellular mass to determine the distribution of immune cells in terms of both number and total mass. Our results indicate that the immune system of a reference 73 kg man consists of 1.8 × 1012 cells (95% CI 1.5-2.3 × 1012), weighing 1.2 kg (95% CI 0.8-1.9). Lymphocytes constitute 40% of the total number of immune cells and 15% of the mass and are mainly located in the lymph nodes and spleen. Neutrophils account for similar proportions of both the number and total mass of immune cells, with most neutrophils residing in the bone marrow. Macrophages, present in most tissues, account for 10% of immune cells but contribute nearly 50% of the total cellular mass due to their large size. The quantification of immune cells within the human body presented here can serve to understand the immune function better and facilitate quantitative modeling of this vital system.


Asunto(s)
Cuerpo Humano , Linfocitos , Masculino , Humanos , Ganglios Linfáticos , Bazo , Macrófagos
4.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686443

RESUMEN

The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown. In this study, a total of 21 lean and obese males (38-71 years) underwent a kidney biopsy. Biochemical analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and blood samples. Correlations between different parameters were evaluated using a comprehensive matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study investigates obesity's impact on renal eCB "tone" in humans, providing insights into the ECS's role in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among obesity, the ECS, and kidney function.


Asunto(s)
Endocannabinoides , Insuficiencia Renal Crónica , Animales , Masculino , Humanos , Riñón , Insuficiencia Renal Crónica/etiología , Obesidad/complicaciones
5.
Am J Physiol Endocrinol Metab ; 322(5): E414-E424, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35285295

RESUMEN

One anastomosis gastric bypass (OAGB) surgery became a common bariatric procedure in recent years. In this surgery, the distal stomach, duodenum, and proximal jejunum are bypassed, leading to weight loss, improvement in metabolic parameters, and a change in hormonal secretion. We sought to generate and characterize a mouse model for OAGB. Mice fed for 26 wk on a high-fat diet were assigned to OAGB, sham surgery, or caloric restriction and were followed for 50 more days on a high-fat diet. Physiological and histological parameters of the mice were compared during and at the end of the experiment. OAGB-operated mice lost weight and displayed low levels of plasma lipids, high insulin sensitivity, and rapid glucose metabolism compared with sham-operated mice. OAGB-operated mice had higher energy expenditure, higher levels of glucagon-like peptide (GLP-1), and lower albumin than weight-matched calorie-restricted mice. There was no difference in the histology of the endocrine pancreas. The livers of OAGB mice had little hepatic steatosis yet presented with a large number of phagocytic cells. The OAGB mouse model recapitulates many of the phenotypes described in patients that underwent OAGB and enables molecular and physiological studies on the outcome of this surgery.NEW & NOTEWORTHY A mouse model for one anastomosis gastric bypass (OAGB) surgery displays similar outcomes to clinical reports and enables to study the weight loss-dependent and -independent effects of this bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Derivación Gástrica , Resistencia a la Insulina , Obesidad Mórbida , Animales , Cirugía Bariátrica/métodos , Modelos Animales de Enfermedad , Derivación Gástrica/métodos , Humanos , Ratones , Obesidad Mórbida/metabolismo , Estudios Retrospectivos , Pérdida de Peso/fisiología
6.
BMC Biol ; 16(1): 13, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357852

RESUMEN

BACKGROUND: The bone morphogenetic protein (BMP) signaling gradient is central for dorsoventral patterning in amphibian embryos. This gradient is established through the interaction of several BMPs and BMP antagonists and modulators, some secreted by Spemann's organizer, a cluster of cells coordinating embryonic development. Anti-dorsalizing morphogenetic protein (ADMP), a BMP-like transforming growth factor beta ligand, negatively affects the formation of the organizer, although it is robustly expressed within the organizer itself. Previously, we proposed that this apparent discrepancy may be important for the ability of ADMP to scale the BMP gradient with embryo size, but how this is achieved is unclear. RESULTS: Here we report that ADMP acts in the establishment of the organizer via temporally and mechanistically distinct signals. At the onset of gastrulation, ADMP is required to establish normal organizer-specific gene expression domains, thus displaying a dorsal, organizer-promoting function. The organizer-restricting, BMP-like function of ADMP becomes apparent slightly later, from mid-gastrula. The organizer-promoting signal of ADMP is mediated by the activin A type I receptor, ACVR1 (also known as activin receptor-like kinase-2, ALK2). ALK2 is expressed in the organizer and is required for organizer establishment. The anti-organizer function of ADMP is mediated by ACVRL1 (ALK1), a putative ADMP receptor expressed in the lateral regions flanking the organizer that blocks expansion of the organizer. Truncated ALK1 prevents the organizer-restricting effects of ADMP overexpression, suggesting a ligand-receptor interaction. We also present a mathematical model of the regulatory network controlling the size of the organizer. CONCLUSIONS: We show that the opposed, organizer-promoting and organizer-restricting roles of ADMP are mediated by different receptors. A self-regulating network is proposed in which ADMP functions early through ALK2 to expand its own expression domain, the organizer, and later functions through ALK1 to restrict this domain. These effects are dependent on ADMP concentration, timing, and the spatial localization of the two receptors. This self-regulating temporal switch may control the size of the organizer and the genes expressed within in response to genetic and external stimuli during gastrulation.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Organizadores Embrionarios/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animales , Proteínas Morfogenéticas Óseas/análisis , Organizadores Embrionarios/química , Proteínas de Xenopus/análisis , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 112(50): 15498-503, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621734

RESUMEN

Type 2 diabetes is characterized by a reduction in insulin function and an increase in glucagon activity that together result in hyperglycemia. Glucagon receptor antagonists have been developed as drugs for diabetes; however, they often increase glucagon plasma levels and induce the proliferation of glucagon-secreting α-cells. We find that the secreted protein Angiopoietin-like 4 (Angptl4) is up-regulated via Pparγ activation in white adipose tissue and plasma following an acute treatment with a glucagon receptor antagonist. Induction of adipose angptl4 and Angptl4 supplementation promote α-cell proliferation specifically. Finally, glucagon receptor antagonist improves glycemia in diet-induced obese angptl4 knockout mice without increasing glucagon levels or α-cell proliferation, underscoring the importance of this protein. Overall, we demonstrate that triglyceride metabolism in adipose tissue regulates α-cells in the endocrine pancreas.


Asunto(s)
Tejido Adiposo/metabolismo , Angiopoyetinas/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Triglicéridos/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/sangre , Animales , Restricción Calórica , Proliferación Celular , Regulación de la Expresión Génica , Glucagón/sangre , Ratones Endogámicos C57BL , Ratones SCID , PPAR gamma/agonistas , PPAR gamma/metabolismo , Receptores de Glucagón/metabolismo
8.
Development ; 141(10): 2150-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803660

RESUMEN

Morphogen gradients guide the patterning of tissues and organs during the development of multicellular organisms. In many cases, morphogen signaling is also required for tissue growth. The consequences of this interplay between growth and patterning are not well understood. In the Drosophila wing imaginal disc, the morphogen Dpp guides patterning and is also required for tissue growth. In particular, it was recently reported that cell division in the disc correlates with the temporal increase in Dpp signaling. Here we mathematically model morphogen gradient formation in a growing tissue, accounting also for morphogen advection and dilution. Our analysis defines a new scaling mechanism, which we term the morphogen-dependent division rule (MDDR): when cell division depends on the temporal increase in morphogen signaling, the morphogen gradient scales with the growing tissue size, tissue growth becomes spatially uniform and the tissue naturally attains a finite size. This model is consistent with many properties of the wing disc. However, we find that the MDDR is not consistent with the phenotype of scaling-defective mutants, supporting the view that temporal increase in Dpp signaling is not the driver of cell division during late phases of disc development. More generally, our results show that local coupling of cell division with morphogen signaling can lead to gradient scaling and uniform growth even in the absence of global feedbacks. The MDDR scaling mechanism might be particularly beneficial during rapid proliferation, when global feedbacks are hard to implement.


Asunto(s)
Tipificación del Cuerpo/genética , División Celular/genética , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Modelos Genéticos , Animales , Drosophila melanogaster/genética , Retroalimentación , Discos Imaginales/metabolismo , Tamaño de los Órganos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
9.
Trends Genet ; 29(6): 339-47, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23369355

RESUMEN

Morphogen gradients are used to pattern a field of cells according to variations in the concentration of a signaling molecule. Typically, the morphogen emanates from a confined group of cells. During early embryogenesis, however, the ability to define a restricted source for morphogen production is limited. Thus, various early patterning systems rely on a broadly expressed morphogen that generates an activation gradient within its expression domain. Computational and experimental work has shed light on how a sharp and robust gradient can be established under those situations, leading to a mechanism termed 'morphogen shuttling'. This mechanism relies on an extracellular shuttling molecule that forms an inert, highly diffusible complex with the morphogen. Morphogen release from the complex following cleavage of the shuttling molecule by an extracellular protease leads to the accumulation of free ligand at the center of its expression domain and a graded activation of the developmental pathway that decreases significantly even within the morphogen-expression domain.


Asunto(s)
Morfogénesis/genética , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Drosophila , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis/fisiología
10.
Bioessays ; 36(2): 151-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24323952

RESUMEN

Scaling of pattern with size has been described and studied for over a century, yet its molecular basis is understood in only a few cases. In a recent, elegant study, Inomata and colleagues proposed a new model explaining how bone morphogenic protein (BMP) activity gradient scales with embryo size in the early Xenopus laevis embryo. We discuss their results in conjunction with an alternative model we proposed previously. The expansion-repression mechanism (ExR) provides a conceptual framework unifying both mechanisms. Results of Inomata and colleagues implicate the chordin-stabilizing protein sizzled as the expander molecule enabling scaling, while we attributed this role to the BMP ligand Admp. The two expanders may work in concert, as suggested by the mathematical model of Inomata et al. We discuss approaches for differentiating the contribution of sizzled and Admp to pattern scaling.


Asunto(s)
Embrión no Mamífero/embriología , Xenopus laevis/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo , Modelos Teóricos , Xenopus laevis/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(38): 15354-9, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949641

RESUMEN

The Spemann organizer stands out from other signaling centers of the embryo because of its broad patterning effects. It defines development along the anteroposterior and dorsoventral axes of the vertebrate body, mainly by secreting antagonists of growth factors. Qualitative models proposed more than a decade ago explain the organizer's region-specific inductions (i.e., head and trunk) as the result of different combinations of antagonists. For example, head induction is mediated by extracellular inhibition of Wnt, BMP, and Nodal ligands. However, little is known about how the levels of these antagonists become harmonized with those of their targets and with the factors initially responsible for germ layers and organizer formation, including Nodal itself. Here we show that key ingredients of the head-organizer development, namely Nodal ligands, Nodal antagonists, and ADMP ligands reciprocally adjust each other's strength and range of activity by a self-regulating network of interlocked feedback and feedforward loops. A key element in this cross-talk is the limited availability of ACVR2a, for which Nodal and ADMP must compete. By trapping Nodal extracellularly, the Nodal antagonists Cerberus and Lefty are permissive for ADMP activity. The system self-regulates because ADMP/ACVR2a/Smad1 signaling in turn represses the expression of the Nodal antagonists, reestablishing the equilibrium. In sum, this work reveals an unprecedented set of interactions operating within the organizer that is critical for embryonic patterning.


Asunto(s)
Organizadores Embrionarios/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Pollos , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ligandos , Modelos Biológicos , Transducción de Señal , Factores de Tiempo , Transfección , Xenopus laevis/metabolismo
12.
Nature ; 453(7199): 1205-11, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18580943

RESUMEN

In groundbreaking experiments, Hans Spemann demonstrated that the dorsal part of the amphibian embryo can generate a well-proportioned tadpole, and that a small group of dorsal cells, the 'organizer', can induce a complete and well-proportioned twinned axis when transplanted into a host embryo. Key to organizer function is the localized secretion of inhibitors of bone morphogenetic protein (BMP), which defines a graded BMP activation profile. Although the central proteins involved in shaping this gradient are well characterized, their integrated function, and in particular how pattern scales with size, is not understood. Here we present evidence that in Xenopus, the BMP activity gradient is defined by a 'shuttling-based' mechanism, whereby the BMP ligands are translocated ventrally through their association with the BMP inhibitor Chordin. This shuttling, with feedback repression of the BMP ligand Admp, offers a quantitative explanation to Spemann's observations, and accounts naturally for the scaling of embryo pattern with its size.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo , Xenopus/embriología , Animales , Tipificación del Cuerpo , Tamaño Corporal , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Embrión no Mamífero/embriología , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Modelos Biológicos , Transporte de Proteínas , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
13.
Trends Ecol Evol ; 39(6): 507-509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777635

RESUMEN

Scientific meetings rarely involve the local community and have minimal educational and scientific impacts on it. Here, we report the successful engagement of high-school students in scientific conferences. To promote science education and trust in science, we call upon conference attendees and organizers to involve high-school students in their meetings.


Asunto(s)
Congresos como Asunto , Ciencia , Estudiantes , Estudiantes/psicología , Humanos , Ciencia/educación , Adolescente , Instituciones Académicas
14.
Mol Metab ; 86: 101979, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945296

RESUMEN

OBJECTIVE: Bariatric surgery is an effective treatment to obesity, leading to weight loss and improvement in glycemia, that is characterized by hypersecretion of gastrointestinal hormones. However, weight regain and relapse of hyperglycemia are not uncommon. We set to identify mechanisms that can enhance gastrointestinal hormonal secretion following surgery to sustain weight loss. METHODS: We investigated the effect of somatostatin (Sst) inhibition on the outcomes of bariatric surgery using a mouse model of sleeve gastrectomy (SG). RESULTS: Sst knockout (sst-ko) mice fed with a calorie-rich diet gained weight normally and had a mild favorable metabolic phenotype compared to heterozygous sibling controls, including elevated plasma levels of GLP-1. Mathematical modeling of the feedback inhibition between Sst and GLP-1 showed that Sst exerts its maximal effect on GLP-1 under conditions of high hormonal stimulation, such as following SG. Obese sst-ko mice that underwent SG had higher levels of GLP-1 compared with heterozygous SG-operated controls. The SG-sst-ko mice regained less weight than controls and maintained lower glycemia months after surgery. Obese wild-type mice that underwent SG and were treated daily with a Sst receptor inhibitor for two months had higher GLP-1 levels, regained less weight, and improved metabolic profile compared to saline-treated SG-operated controls, and compared to inhibitor or saline-treated sham-operated obese mice. CONCLUSIONS: Our results suggest that inhibition of Sst signaling enhances the long-term favorable metabolic outcomes of bariatric surgery.

15.
Proc Natl Acad Sci U S A ; 107(15): 6924-9, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20356830

RESUMEN

Despite substantial size variations, proportions of the developing body plan are maintained with a remarkable precision. Little is known about the mechanisms that ensure this adaptation (scaling) of pattern with size. Most models of patterning by morphogen gradients do not support scaling. In contrast, we show that scaling arises naturally in a general feedback topology, in which the range of the morphogen gradient increases with the abundance of some diffusible molecule, whose production, in turn, is repressed by morphogen signaling. We term this mechanism "expansion-repression" and show that it can function within a wide range of biological scenarios. The expansion-repression scaling mechanism is analogous to an integral-feedback controller, a key concept in engineering that is likely to be instrumental also in maintaining biological homeostasis.


Asunto(s)
Retroalimentación Fisiológica , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Modelos Teóricos , Transducción de Señal , Xenopus
16.
iScience ; 26(2): 106047, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818281

RESUMEN

Interventions to reduce fat are important for human health. However, they can have opposing effects such as exercise that decreases fat but increases food intake, or coherent effects such as leptin resistance which raises both. Furthermore, some interventions show an overshoot in food intake, such as recovery from a diet, whereas others do not. To explain these properties we present a graphical framework called the operating point model, based on leptin control of feeding behavior. Steady-state fat and food intake is given by the intersection of two experimental curves - steady-state fat at a given food intake and ad libitum food intake at a given fat level. Depending on which curve an intervention shifts, it has opposing or coherent effects with or without overshoot, in excellent agreement with rodent data. The model also explains the quadratic relation between leptin and fat in humans. These concepts may guide the understanding of fat regulation disorders.

17.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912552

RESUMEN

Mice are a common model organism used to study metabolic diseases such as diabetes mellitus. Glucose levels are typically measured by tail-bleeding, which requires handling the mice, causes stress, and does not provide data on freely behaving mice during the dark cycle. State-of-the-art continuous glucose measurement in mice requires inserting a probe into the aortic arch of the mouse, as well as a specialized telemetry system. This challenging and expensive method has not been adopted by most labs. Here, we present a simple protocol involving the utilization of commercially available continuous glucose monitors used by millions of patients to measure glucose continuously in mice as a part of basic research. The glucose-sensing probe is inserted into the subcutaneous space in the back of the mouse through a small incision to the skin and is held in place tightly using a couple of sutures. The device is sutured to the mouse skin to ensure it remains in place. The device can measure glucose levels for up to 2 weeks and sends the data to a nearby receiver without any need to handle the mice. Scripts for the basic data analysis of glucose levels recorded are provided. This method, from surgery to computational analysis, is cost-effective and potentially very useful in metabolic research.


Asunto(s)
Glucemia , Diabetes Mellitus , Ratones , Animales , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Glucosa , Telemetría
18.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36809274

RESUMEN

Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Ratones , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Transportador 2 de Sodio-Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Betaína , Glucosa , Sodio/metabolismo , Metionina
19.
iScience ; 26(7): 107046, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37389181

RESUMEN

Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.

20.
Cell Rep ; 42(12): 113457, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995187

RESUMEN

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Asunto(s)
Células Acinares , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Células Acinares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Páncreas/metabolismo , Diferenciación Celular , Apoptosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA