Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 18(4): 1027-1040, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31584248

RESUMEN

The molecular basis of cell-cell adhesion in woody tissues is not known. Xylem cells in wood particles of hybrid poplar (Populus tremula × P. alba cv. INRA 717-1B4) were separated by oxidation of lignin with acidic sodium chlorite when combined with extraction of xylan and rhamnogalacturonan-I (RG-I) using either dilute alkali or a combination of xylanase and RG-lyase. Acidic chlorite followed by dilute alkali treatment enables cell-cell separation by removing material from the compound middle lamellae between the primary walls. Although lignin is known to contribute to adhesion between wood cells, we found that removing lignin is a necessary but not sufficient condition to effect complete cell-cell separation in poplar lines with various ratios of syringyl:guaiacyl lignin. Transgenic poplar lines expressing an Arabidopsis thaliana gene encoding an RG-lyase (AtRGIL6) showed enhanced cell-cell separation, increased accessibility of cellulose and xylan to hydrolytic enzyme activities, and increased fragmentation of intact wood particles into small cell clusters and single cells under mechanical stress. Our results indicate a novel function for RG-I, and also for xylan, as determinants of cell-cell adhesion in poplar wood cell walls. Genetic control of RG-I content provides a new strategy to increase catalyst accessibility and saccharification yields from woody biomass for biofuels and industrial chemicals.


Asunto(s)
Adhesión Celular , Pectinas/química , Populus , Madera/citología , Pared Celular , Lignina , Plantas Modificadas Genéticamente , Polisacárido Liasas/genética
2.
Plant Physiol ; 171(3): 1905-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217494

RESUMEN

Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabinosa/metabolismo , Pared Celular/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabinosa/genética , Pared Celular/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucosiltransferasas/química , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Plantas Modificadas Genéticamente , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Homología de Secuencia de Aminoácido
3.
Front Plant Sci ; 3: 187, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22936938

RESUMEN

Despite differences in cell wall composition between the type I cell walls of dicots and most monocots and the type II walls of commelinid monocots, all flowering plants respond to the same classes of growth regulators in the same tissue-specific way and exhibit the same growth physics. Substantial progress has been made in defining gene families and identifying mutants in cell wall-related genes, but our understanding of the biochemical basis of wall extensibility during growth is still rudimentary. In this review, we highlight insights into the physiological control of cell expansion emerging from genetic functional analyses, mostly in Arabidopsis and other dicots, and a few examples of genes of potential orthologous function in grass species. We discuss examples of cell wall architectural features that impact growth independent of composition, and progress in identifying proteins involved in transduction of growth signals and integrating their outputs in the molecular machinery of wall expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA