Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791332

RESUMEN

In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Ratones , Ratas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Nanopartículas/química , Línea Celular Tumoral , Polietilenglicoles/química , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Masculino , Estrés Oxidativo/efectos de los fármacos
2.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350964

RESUMEN

Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.


Asunto(s)
Metilación de ADN , Microscopía , Cromatina/genética , Inmunoprecipitación de Cromatina , ADN/genética , Metilación de ADN/genética
3.
J Cell Sci ; 132(15)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31331962

RESUMEN

Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform-specific manner. Previous work has implicated specific roles for at least five different tropomyosin isoforms in stress fibres, as depletion of any of these five isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study, we investigate tropomyosin organisation in stress fibres by using super-resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. The isoforms Tpm3.1 and 3.2 (hereafter Tpm3.1/3.2, encoded by TPM3) colocalise with non-muscle myosin IIa and IIb heads, and are in register, but do not overlap, with non-muscle myosin IIa and IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Fibras de Estrés/metabolismo , Tropomiosina/metabolismo , Línea Celular Tumoral , Humanos , Miosina Tipo IIA no Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/genética , Tropomiosina/genética
4.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360570

RESUMEN

Cancer cell invasion through tissue barriers is the intrinsic feature of metastasis, the most life-threatening aspect of cancer. Detailed observation and analysis of cancer cell behaviour in a 3D environment is essential for a full understanding of the mechanisms of cancer cell invasion. The inherent limits of optical microscopy resolution do not allow to for in-depth observation of intracellular structures, such as invadopodia of invading cancer cells. The required resolution can be achieved using electron microscopy techniques such as FIB-SEM. However, visualising cells in a 3D matrix using FIB-SEM is challenging due to difficulties with localisation of a specific cell deep within the resin block. We have developed a new protocol based on the near-infrared branding (NIRB) procedure that extends the pattern from the surface grid deep inside the resin. This 3D burned pattern allows for precise trimming followed by targeted 3D FIB-SEM. Here we present detailed 3D CLEM results combining confocal and FIB-SEM imaging of cancer cell invadopodia that extend deep into the collagen meshwork.


Asunto(s)
Neoplasias de la Mama/patología , Fibrosarcoma/patología , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Podosomas/patología , Espectroscopía Infrarroja Corta/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Invasividad Neoplásica , Células Tumorales Cultivadas
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638994

RESUMEN

The authors present their contribution to the improvement of methods suitable for the detection of the freezing and thawing damage of cells of cryopreserved venous grafts used for lower limb revascularization procedures. They studied the post-thaw viability of cells of the wall of cryopreserved venous grafts (CVG) immediately after thawing and after 24 and 48 h culture at +37 °C in two groups of six CVG selected randomly for slow thawing in the refrigerator and rapid thawing in a water bath at +37 °C. The grafts were collected from multi-organ and tissue brain-dead donors, cryopreserved, and stored in a liquid nitrogen vapor phase for five years. The viability was assessed from tissue slices obtained by perpendicular and longitudinal cuts of the thawed graft samples using in situ staining with fluorescence vital dyes. The mean and median immediate post-thaw viability values above 70% were found in using both thawing protocols and both types of cutting. The statistically significant decline in viability after the 48-h culture was observed only when using the slow thawing protocol and perpendicular cutting. The possible explanation might be the "solution effect damage" during slow thawing, which caused a gentle reduction in the graft cellularity. The possible influence of this phenomenon on the immunogenicity of CVG should be the subject of further investigations.


Asunto(s)
Aloinjertos/diagnóstico por imagen , Criopreservación/métodos , Vena Femoral/diagnóstico por imagen , Colorantes Fluorescentes , Congelación , Imagen Óptica/métodos , Vena Safena/diagnóstico por imagen , Aloinjertos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Vena Femoral/efectos de los fármacos , Humanos , Microscopía Confocal/métodos , Vena Safena/efectos de los fármacos , Donantes de Tejidos , Injerto Vascular/métodos
6.
Biophys J ; 119(7): 1359-1370, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32919495

RESUMEN

The ability to quantify protein concentrations and to measure protein interactions in vivo is key information needed for the understanding of complex processes inside cells, but the acquisition of such information from living cells is still demanding. Fluorescence-based methods like two-color fluorescence cross-correlation spectroscopy can provide this information, but measurement precision is hampered by various sources of errors caused by instrumental or optical limitations such as imperfect overlap of detection volumes or detector cross talk. Furthermore, the nature and properties of used fluorescent proteins or fluorescent dyes, such as labeling efficiency, fluorescent protein maturation, photostability, bleaching, and fluorescence brightness can have an impact. Here, we take advantage of previously published fluorescence lifetime correlation spectroscopy which relies on lifetime differences as a mean to discriminate fluorescent proteins with similar spectral properties and to use them for single-color fluorescence lifetime cross-correlation spectroscopy (sc-FLCCS). By using only one excitation and one detection wavelength, this setup avoids all sources of errors resulting from chromatic aberrations and detector cross talk. To establish sc-FLCCS, we first engineered and tested multiple green fluorescent protein (GFP)-like fluorescent proteins for their suitability. This identified a novel, to our knowledge, GFP variant termed short-lifetime monomeric GFP with the so-far shortest lifetime. Monte-Carlo simulations were employed to explore the suitability of different combinations of GFP variants. Two GFPs, Envy and short-lifetime monomeric GFP, were predicted to constitute the best performing couple for sc-FLCCS measurements. We demonstrated application of this GFP pair for measuring protein interactions between the proteasome and interacting proteins and for measuring protein interactions between three partners when combined with a red florescent protein. Together, our findings establish sc-FLCCS as a valid alternative for conventional dual-color fluorescence cross-correlation spectroscopy measurements.


Asunto(s)
Colorantes Fluorescentes , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Espectrometría de Fluorescencia
7.
Ann Vasc Surg ; 64: 347-354, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31743787

RESUMEN

BACKGROUND: The aim of our study was to assess the impact of different thawing protocols on morphological changes arising in cryopreserved human saphenous vein grafts. METHODS: The study was performed in 12 saphenous vein grafts harvested in brain death donors. Storage in the vapor phase of liquid nitrogen for 3 or 5 years followed. Two thawing protocols were tested: slow thawing in a refrigerator at temperature +4°C for 2 hr and rapid thawing-in a water bath at +37°C. Grafts were processed for scanning electron microscopy. Comparisons of continuous parameters under study between experimental groups were performed using the t-test (age, cold ischemia time, exposure to cryoprotectant, time of storage, total thawing time, mean thawing rate, morphology scoring of thawed HSVG) and the median test (HSVG length). Categorical parameters (sex and blood group) were formally tested using the chi-square test. RESULTS: All samples were evaluated according to morphological changes and scored in terms of morphologically intact endothelium, confluent endothelium with structural inhomogeneity, disruption of the intercellular contacts, separation of the endothelial cells, complete loss of the endothelium, and damage of the subendothelial layers. There is no statistically significant difference between the sample sets at the significance level of 0.05. There was no association with donors' age, sex, and time of storage. CONCLUSIONS: Human cryopreserved saphenous vein grafts in our experimental work showed no difference in terms of structural deterioration of the endothelial surface and basal membrane depending on different thawing protocols used.


Asunto(s)
Criopreservación , Crioprotectores/farmacología , Células Endoteliales/efectos de los fármacos , Vena Safena/efectos de los fármacos , Adolescente , Adulto , Células Endoteliales/trasplante , Células Endoteliales/ultraestructura , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vena Safena/trasplante , Vena Safena/ultraestructura , Factores de Tiempo , Supervivencia Tisular , Recolección de Tejidos y Órganos , Adulto Joven
8.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429097

RESUMEN

T cell activation is initiated when ligand binding to the T cell receptor (TCR) triggers intracellular phosphorylation of the TCR-CD3 complex. However, it remains unknown how biophysical properties of TCR engagement result in biochemical phosphorylation events. Here, we constructed an optogenetic tool that induces spatial clustering of ζ-chain in a light controlled manner. We showed that spatial clustering of the ζ-chain intracellular tail alone was sufficient to initialize T cell triggering including phosphorylation of ζ-chain, Zap70, PLCγ, ERK and initiated Ca2+ flux. In reconstituted COS-7 cells, only Lck expression was required to initiate ζ-chain phosphorylation upon ζ-chain clustering, which leads to the recruitment of tandem SH2 domain of Zap70 from cell cytosol to the newly formed ζ-chain clusters at the plasma membrane. Taken together, our data demonstrated the biophysical relevance of receptor clustering in TCR signaling.


Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Células COS , Calcio/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , Análisis por Conglomerados , Citosol/metabolismo , Difusión , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Jurkat , Luz , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Optogenética , Fosforilación , Receptores de Antígenos de Linfocitos T/química , Espectrometría de Fluorescencia
9.
Biophys J ; 115(8): 1498-1508, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30269886

RESUMEN

Membrane viscosity and hydration levels characterize the biophysical properties of biological membranes and are reflected in the rate and extent of solvent relaxation, respectively, of environmentally sensitive fluorophores such as Laurdan. Here, we first developed a method for a time-resolved general polarization (GP) analysis with fluorescence-lifetime imaging microscopy that captures both the extent and rate of Laurdan solvent relaxation. We then conducted time-resolved GP measurements with Laurdan-stained model membranes and cell membranes. These measurements revealed that cholesterol levels in lipid vesicles altered membrane hydration and viscosity, whereas curvature had little effect on either parameter. We also applied the method to the plasma membrane of live cells using a supercritical angle fluorescence objective, to our knowledge the first time fluorescence-lifetime imaging microscopy images were generated with supercritical angle fluorescence. Here, we found that local variations in membrane cholesterol most likely account for the heterogeneity of Laurdan lifetime in plasma membrane. In conclusion, time-resolved GP measurements provide additional insights into the biophysical properties of membranes.


Asunto(s)
2-Naftilamina/análogos & derivados , Membrana Celular/metabolismo , Fluorescencia , Lauratos/química , Lípidos de la Membrana/química , Agua/química , 2-Naftilamina/química , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Células HeLa , Humanos , Lípidos de la Membrana/metabolismo , Termodinámica , Viscosidad
10.
Biophys J ; 114(12): 2855-2864, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925022

RESUMEN

The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane.


Asunto(s)
Membrana Celular/química , Lípidos de la Membrana/química , Animales , Benzoxazinas/química , Células COS , Supervivencia Celular , Chlorocebus aethiops , Compuestos de Amonio Cuaternario/química , Espectrometría de Fluorescencia
11.
J Struct Biol ; 195(3): 345-352, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402534

RESUMEN

Alzheimer's disease (AD) involves the propagation of filaments of tau protein throughout the cerebral cortex. Imaging tau filaments and oligomers in human brain at high resolution would help contribute insight into the mechanism and progression of tauopathic diseases. STED microscopy is a nano-scale imaging technique and we aimed to test the abilities of this method for resolving tau structures within human brain. Using autopsied 50µm AD brain sections, we demonstrate that STED microscopy can resolve immunolabelled tau filaments at 77nm resolution. Ribbon-like tau filaments imaged by STED appeared smooth along their axis with limited axial undulations. STED also resolved 70-80nm wide tau puncta. Of the fluorophores tested, STAR635p was optimal for STED imaging in this tissue. This was in part due to brain tissue autofluorescence within the lower wavelength ranges (488-590nm). Further, the stability and minimal photobleaching of STAR635p allowed STED z-stacks of neurons packed with tau filaments (neurofibrillary tangles) to be collated. There was no loss of x-y image resolution of individual tau filaments through the 20µm z-stack. This demonstrates that STED can contribute to nano-scale analysis and characterisation of pathologies within banked human autopsied brain tissue. Resolving tau structures at this level of resolution provides promising avenues for understanding mechanisms of pathology propagation in the different tauopathies as well as illuminating what contributes to disease heterogeneity.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Sustancia Gris/patología , Proteínas tau/química , Enfermedad de Alzheimer/patología , Sustancia Gris/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/ultraestructura , Imagen Óptica , Coloración y Etiquetado , Proteínas tau/ultraestructura
12.
Biophys J ; 108(3): 596-609, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25650927

RESUMEN

Only a limited number of noninvasive techniques are available to directly measure the dynamic behavior of lipids in model and cell membranes. Here, we explored whether a commercial instrument could be used for fluorescence correlation spectroscopy (FCS) under pulsed stimulated emission depletion (STED). To overcome issues with photobleaching and poor distinction between confocal and STED signals, we implemented resonant line-scan STED with filtered FCS, which has the additional benefit of autocalibrating the dimensions of the point-spread function and obtaining spatially resolved molecular mobility at subdiffraction resolution. With supported lipid bilayers, we achieved a detection spot radius of 40 nm, although at the expense of decreased molecular brightness. We also used this approach to map the dynamics of Atto646N-labeled sphingomyelin and phosphatidylethanolamine in the plasma membrane. Despite the reliability of the method and the demonstration that photobleaching and the photophysical properties of the dye did not influence diffusion measurements, we found great heterogeneities even within one cell. For both lipids, regions of high local density correlated with slow molecular diffusion, indicating trapping of Atto646N-labeled lipids. Future studies with new dyes are needed to reveal the origin of the trapping.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Modelos Biológicos , Espectrometría de Fluorescencia/métodos , Animales , Células COS , Calibración , Chlorocebus aethiops , Membrana Dobles de Lípidos , Fotones , Relación Señal-Ruido
13.
Opt Express ; 22(1): 885-99, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515048

RESUMEN

We introduce two new alternative experimental realizations of dual focus fluorescence correlation spectroscopy (2fFCS), a method which allows for obtaining absolute diffusion coefficient of fast moving fluorescing molecules at nanomolar concentrations, based on fast polarization modulation of the excitation beam by a resonant electro-optical modulator. The first approach rotates every second linearly polarized laser pulse by 90 degrees to obtain independent intensity readout for both foci, similar to original design. The second approach combines polarization modulation of cw laser and fluorescence lifetime correlation spectroscopy (FLCS) like analysis to obtain clean correlation curves for both overlapping foci. We tested our new approaches with different lasers and samples, revealed a need for intensity cross-talk corrections by comparing the methods with each other and discussed experimental artifacts stemming from improper polarization alignment and detector afterpulsing. The advantages of our solutions are that the polarization rotation approach requires just one pulsed laser for each wavelength, that the polarization modulation approach even mitigates the need of pulsed lasers by using standard cw lasers and that it allows the DIC prism to be placed at an arbitrary angle. As a consequence the presented experimental solutions for 2fFCS can be more easily implemented into commercial laser scanning microscopes.


Asunto(s)
Algoritmos , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Refractometría/instrumentación , Refractometría/métodos , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Diseño de Equipo , Análisis de Falla de Equipo
14.
Opt Express ; 22(3): 2973-88, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663589

RESUMEN

We present a fluorescence correlation spectroscopy (FCS) approach to obtain spectral cross-talk free auto- and cross-correlation functions for probes with highly overlapping emission spectra. Confocal microscopes with either a hyperspectral EM-CCD or six-channel PMT array spectral detection were used, followed by a photon filtering correlation approach that results in spectral unmixing. The method is highly sensitive and can distinguish between Atto488 and Oregon Green 488 signals so that auto-correlation curves can be fitted without the need for cross-talk correction. We also applied the approach to the membrane dye Laurdan whose emission is dependent on the lipid order within the bilayer. With fluorescence spectral correlation spectroscopy (FSCS), we could obtain spectral cross-talk free auto- and cross-correlation functions corresponding to Laurdan located in liquid ordered and liquid disordered phases.


Asunto(s)
Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Microscopía Confocal/instrumentación , Espectrometría de Fluorescencia/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
15.
Biochim Biophys Acta ; 1818(9): 2126-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22579979

RESUMEN

Each of the three plasma membrane Ato proteins is involved in ammonium signalling and the development of yeast colonies. This suggests that although these proteins are homologous, they do not functionally substitute for each other, but may form a functional complex. Here, we present a detailed combined FRET, FLIM and photobleaching study, which enabled us to detect interactions between Ato proteins found in distinct compartments of yeast cells. We thus show that the proteins Ato1p and Ato2p interact and can form complexes when present in the plasma membrane. No interaction was detected between Ato1p and Ato3p or Ato2p and Ato3p. In addition, using specially prepared strains, we were able to detect an interaction between molecules of the same Ato protein, namely Ato1p-Ato1p and Ato3p-Ato3p, but not Ato2p-Ato2p.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/química , Espectrometría de Fluorescencia/métodos , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia/métodos , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo
16.
Front Cell Dev Biol ; 11: 1110681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635875

RESUMEN

Juno and CD9 protein, expressed in oolemma, are known to be essential for sperm-oocyte binding and fusion. Although evidence exists that these two proteins cooperate, their interaction has not yet been demonstrated. Here in, we present Juno and CD9 mutual localization over the surface of mouse metaphase II oocytes captured using the 3D STED super-resolution technique. The precise localization of examined proteins was identified in different compartments of oolemma such as the microvillar membrane, planar membrane between individual microvilli, and the membrane of microvilli-free region. Observed variance in localization of Juno and CD9 was confirmed by analysis of transmission and scanning electron microscopy images, which showed a significant difference in the presence of proteins between selected membrane compartments. Colocalization analysis of super-resolution images based on Pearson's correlation coefficient supported evidence of Juno and CD9 mutual position in the oolemma, which was identified by proximity ligation assay. Importantly, the interaction between Juno and CD9 was detected by co-immunoprecipitation and mass spectrometry in HEK293T/17 transfected cell line. For better understanding of experimental data, mouse Juno and CD9 3D structure were prepared by comparative homology modelling and several protein-protein flexible sidechain dockings were performed using the ClusPro server. The dynamic state of the proteins was studied in real-time at atomic level by molecular dynamics (MD) simulation. Docking and MD simulation predicted Juno-CD9 interactions and stability also suggesting an interactive mechanism. Using the multiscale approach, we detected close proximity of Juno and CD9 within microvillar oolemma however, not in the planar membrane or microvilli-free region. Our findings show yet unidentified Juno and CD9 interaction within the mouse oolemma protein network prior to sperm attachment. These results suggest that a Juno and CD9 interactive network could assist in primary Juno binding to sperm Izumo1 as a prerequisite to subsequent gamete membrane fusion.

17.
Phys Chem Chem Phys ; 14(42): 14516-22, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22870507

RESUMEN

Although there were experimental indications that phospholipid bilayers hydrated with D(2)O express different biophysical properties compared with hydration by ordinary H(2)O, a molecular concept for this behavior difference was only recently proposed by a molecular dynamics simulations study [T. Róg et al., J. Phys. Chem. B, 2009, 113, 2378-2387]. Here we attempt to verify those theoretical predictions by fluorescence measurements on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. Specifically, we determine the water isotope effect on headgroup hydration and mobility, lateral lipid diffusion and lipid backbone packing. Time-dependent fluorescence shift experiments show significantly slower dynamics and lower hydration of the headgroup region for a bilayer hydrated with D(2)O, an observation in good agreement with the calculated predicted differences in duration of lipid-lipid and lipid-water bridges and extent of water penetration into the bilayer, respectively. The water isotope effect on the lipid order parameter of the bilayer core (measured by fluorescence anisotropy) and lateral diffusion of lipid molecules (determined by two-focus fluorescence correlation spectroscopy) is close to the experimental errors of the experiments, however also refers to slightly more rigid organization of phospholipid bilayers in heavy water. This study confirms the view that the water isotope effect can be particularly found in time-resolved physicochemical properties of the membrane. Together with the simulations our experiments provide a comprehensive, molecular view on the effect of D(2)O on phospholipid bilayers.


Asunto(s)
Óxido de Deuterio/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfolípidos/química , Fluorescencia , Conformación Molecular , Factores de Tiempo
18.
Int J Mol Sci ; 13(10): 12890-910, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23202928

RESUMEN

Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector afterpulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined.


Asunto(s)
Espectrometría de Fluorescencia , Difusión , Colorantes Fluorescentes/química , Liposomas/química , Modelos Teóricos , Fotones
19.
J Biotechnol ; 351: 50-59, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500702

RESUMEN

Euglena gracilis is a freshwater flagellate possessing secondary chloroplast of green algal origin. This protist has numerous biotechnological applications such as production of biofuels and pharmaceuticals, and it can be also used for bioremediation of polluted water and wastewater. One of the highest limitations for its large-scale cultivation is that it cannot synthesize vitamins B1 and B12 which are expensive and they have to be added to media. This study revealed that E. gracilis can be grown for long time periods without the addition of vitamins B1 and B12 in the co-culture containing filamentous fungus Cladosporium westerdijkiae, and bacteria Lysinibacillus boronitolerans and Pseudobacillus badius. Growing of E. gracilis in such co-cultures without the addition of vitamins can dramatically reduce large scale cultivation costs. Moreover, C. westerdijkiae could be used in biotechnology for immobilization and effective harvesting of E. gracilis from big cultivation containers by bioflocculation.


Asunto(s)
Euglena gracilis , Bacillaceae , Bacillus , Cladosporium , Tiamina , Vitaminas
20.
Curr Protoc ; 2(1): e340, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35007410

RESUMEN

Enamel is the hardest tissue in mammalian organisms and is the layer covering the tooth. It consists of hydroxyapatite (HAP) crystallites, which mineralize on a protein scaffold known as the enamel matrix. Enamel matrix assembly is a very complex process mediated by enamel matrix proteins (EMPs). Altered HAP deposition or disintegration of the protein scaffold can cause enamel defects. Various methods have been established for enamel phenotyping, including MicroCT scanning with various resolutions from 9 µm for in vivo imaging to 1.5 µm for ex vivo imaging. With increasing resolution, we can see not only the enamel layer itself but also a detailed map of mineralization. To study enamel microstructure, we combine the MicroCT analysis with scanning electron microscopy (SEM), which enables us to perform element analyses such as calcium-carbon ratio. However, the methods mentioned above only show the result-already formed enamel. Stimulated emission depletion (STED) microscopy provides extra information about protein structure in the form of EMP localization and position before enamel mineralization. A combination of all these methods allows analyzing the same sample on multiple levels-starting with the live animal being scanned harmlessly and quickly, followed by sacrifice and high-resolution MicroCT scans requiring no special sample preparation. The biggest advantage is that samples remain in perfect condition for SEM or STED microscopic analysis. © 2022 Wiley Periodicals LLC. Basic Protocol 1: In vivo MicroCT scanning of mouse Basic Protocol 2: Ex vivo HR-MicroCT of the teeth Basic Protocol 3: SEM for teeth microstructure Basic Protocol 4: Stimulated emission depletion (STED) microscopy.


Asunto(s)
Calcificación de Dientes , Diente , Animales , Durapatita , Ratones , Microscopía Electrónica de Rastreo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA