Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Exp Bot ; 75(5): 1252-1264, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015983

RESUMEN

Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.


Asunto(s)
Genómica , Odorantes , Flores/genética
2.
J Exp Bot ; 75(11): 3233-3247, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38546444

RESUMEN

Floral forms with an increased number of petals, also known as double-flower phenotypes, have been selected and conserved in many domesticated plants, particularly in ornamentals, because of their great economic value. The molecular and genetic mechanisms that control this trait are therefore of great interest, not only for scientists, but also for breeders. In this review, we summarize current knowledge of the gene regulatory networks of flower initiation and development and known mutations that lead to variation of petal number in many species. In addition to the well-accepted miR172/AP2-like module, for which many questions remain unanswered, we also discuss other pathways in which mutations also lead to the formation of extra petals, such as those involved in meristem maintenance, hormone signalling, epigenetic regulation, and responses to environmental signals. We discuss how the concept of 'natural mutants' and recent advances in genomics and genome editing make it possible to explore the molecular mechanisms underlying double-flower formation, and how such knowledge could contribute to the future breeding and selection of this trait in more crops.


Asunto(s)
Flores , Flores/genética , Flores/crecimiento & desarrollo , Flores/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Mutación , Redes Reguladoras de Genes
3.
J Exp Bot ; 74(18): 5783-5804, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37392434

RESUMEN

Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.


Asunto(s)
Antocianinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas
4.
Plant Biotechnol J ; 20(6): 1182-1196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35247284

RESUMEN

Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.


Asunto(s)
Dianthus , Dianthus/anatomía & histología , Dianthus/genética , Dianthus/metabolismo , Eugenol , Flores , Fenotipo , Factores de Transcripción/genética
5.
PLoS Genet ; 15(1): e1007899, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695029

RESUMEN

Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9/genética , Proteínas Cullin/genética , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Proliferación Celular/genética , Drosophila/genética , Nicotiana/genética , Ubiquitina
6.
Plant Physiol ; 179(3): 1064-1079, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30622153

RESUMEN

Floral scent is one of the most important characters in horticultural plants. Roses (Rosa spp.) have been cultivated for their scent since antiquity. However, probably by selecting for cultivars with long vase life, breeders have lost the fragrant character in many modern roses, especially the ones bred for the cut flower market. The genetic inheritance of scent characters has remained elusive so far. In-depth knowledge of this quantitative trait is thus very much needed to breed more fragrant commercial cultivars. Furthermore, rose hybrids harbor a composite genomic structure, which complexifies quantitative trait studies. To understand rose scent inheritance, we characterized a segregating population from two diploid cultivars, Rosa × hybrida cv H190 and Rosa wichurana, which have contrasting scent profiles. Several quantitative trait loci for the major volatile compounds in this progeny were identified. One among these loci contributing to the production of 2-phenylethanol, responsible for the characteristic odor of rose, was found to be colocalized with a candidate gene belonging to the 2-phenylethanol biosynthesis pathway: the PHENYLACETALDEHYDE SYNTHASE gene RhPAAS An in-depth allele-specific expression analysis in the progeny demonstrated that only one allele was highly expressed and was responsible for the production of 2-phenylethanol. Unexpectedly, its expression was found to start early during flower development, before the production of the volatile 2-phenylethanol, leading to the accumulation of glycosylated compounds in petals.


Asunto(s)
Alcohol Feniletílico/metabolismo , Proteínas de Plantas/fisiología , Rosa/metabolismo , Alelos , Vías Biosintéticas , Flores/genética , Flores/metabolismo , Odorantes , Alcohol Feniletílico/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Rosa/genética
7.
J Exp Bot ; 71(6): 1915-1927, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31990971

RESUMEN

The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.


Asunto(s)
Dianthus , Mapeo Cromosómico , Dianthus/genética , Flores/genética , Ligamiento Genético , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Molecules ; 23(8)2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-30060619

RESUMEN

Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs' roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes' expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.


Asunto(s)
Acuaporinas/genética , Dianthus/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Acuaporinas/metabolismo , Secuencia Conservada , Dianthus/anatomía & histología , Dianthus/clasificación , Dianthus/metabolismo , Exones , Flores/anatomía & histología , Flores/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Intrones , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo
11.
Biophys J ; 108(9): 2235-48, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25954881

RESUMEN

Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.


Asunto(s)
Pared Celular/química , Elasticidad , Viscosidad , Arabidopsis/citología , Fenómenos Biomecánicos , Microscopía de Fuerza Atómica
12.
Biophys J ; 107(10): 2237-44, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25418292

RESUMEN

Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.


Asunto(s)
Arabidopsis/citología , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Línea Celular , Ratones , Microtúbulos/metabolismo , Análisis de la Célula Individual , Especificidad de la Especie
13.
Plant Cell ; 23(3): 973-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21421811

RESUMEN

Plant organ growth and final size are determined by coordinated cell proliferation and expansion. The BIGPETALp (BPEp) basic helix-loop-helix (bHLH) transcription factor was shown to limit Arabidopsis thaliana petal growth by influencing cell expansion. We demonstrate here that BPEp interacts with AUXIN RESPONSE FACTOR8 (ARF8) to affect petal growth. This interaction is mediated through the BPEp C-terminal domain (SD(BPEp)) and the C-terminal domain of ARF8. Site-directed mutagenesis identified an amino acid consensus motif in SD(BPEp) that is critical for mediating BPEp-ARF8 interaction. This motif shares sequence similarity with motif III of ARF and AUXIN/INDOLE-3-ACETIC ACID proteins. Petals of arf8 mutants are significantly larger than those of the wild type due to increased cell number and increased cell expansion. bpe arf8 double mutant analyses show that during early petal development stages, ARF8 and BPEp work synergistically to limit mitotic growth. During late stages, ARF8 and BPEp interact to limit cell expansion. The alterations in cell division and cell expansion observed in arf8 and/or bpe mutants are associated with a change in expression of early auxin-responsive genes. The data provide evidence of an interaction between an ARF and a bHLH transcription factor and of its biological significance in regulating petal growth, with local auxin levels likely influencing such a biological function.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Flores/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , División Celular , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Flores/citología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Mutagénesis Sitio-Dirigida , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
14.
Mol Hortic ; 4(1): 14, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622744

RESUMEN

Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.

15.
J Exp Bot ; 64(4): 847-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23364936

RESUMEN

Roses hold high symbolic value and great cultural importance in different societies throughout human history. They are widely used as garden ornamental plants, as cut flowers, and for the production of essential oils for the perfume and cosmetic industries. Domestication of roses has a long and complex history, and the rose species have been hybridized across vast geographic areas such as Europe, Asia, and the Middle East. The domestication processes selected several flower characters affecting floral quality, such as recurrent flowering, double flowers, petal colours, and fragrance. The molecular and genetic events that determine some of these flower characters cannot be studied using model species such as Arabidopsis thaliana, or at least only in a limited manner. In this review, we comment on the recent development of genetic, genomic, and transcriptomic tools for roses, and then focus on recent advances that have helped unravel the molecular mechanisms underlying several rose floral traits.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Rosa/genética , Antocianinas/genética , Antocianinas/metabolismo , Color , Flores/crecimiento & desarrollo , Flores/metabolismo , Genómica/métodos , Fenotipo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Rosa/crecimiento & desarrollo , Rosa/metabolismo , Factores de Tiempo , Compuestos Orgánicos Volátiles/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(37): 16384-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20736351

RESUMEN

The growth of an organism and its size determination require the tight regulation of cell proliferation and cell growth. However, the mechanisms and regulatory networks that control and integrate these processes remain poorly understood. Here, we address the biological role of Arabidopsis translationally controlled tumor protein (AtTCTP) and test its shared functions in animals and plants. The data support a role of plant AtTCTP as a positive regulator of mitotic growth by specifically controlling the duration of the cell cycle. We show that, in contrast to animal TCTP, plant AtTCTP is not implicated in regulating postmitotic growth. Consistent with this finding, plant AtTCTP can fully rescue cell proliferation defects in Drosophila loss of function for dTCTP. Furthermore, Drosophila dTCTP is able to fully rescue cell proliferation defects in Arabidopsis tctp knockouts. Our data provide evidence that TCTP function in regulating cell division is part of a conserved growth regulatory pathway shared between plants and animals. The study also suggests that, although the cell division machinery is shared in all multicellular organisms to control growth, cell expansion can be uncoupled from cell division in plants but not in animals.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Biomarcadores de Tumor/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Biomarcadores de Tumor/genética , Proliferación Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Proteína Tumoral Controlada Traslacionalmente 1
17.
BMC Genomics ; 13: 638, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23164410

RESUMEN

BACKGROUND: For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. RESULTS: Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. CONCLUSIONS: The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Brotes de la Planta/genética , ARN Mensajero/genética , Rosa/genética , Programas Informáticos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Fragaria/genética , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Reacción en Cadena de la Polimerasa , Prunus/genética , Transcriptoma
18.
Genes (Basel) ; 13(6)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35741743

RESUMEN

Roses have high economic values as garden plants and for cut-flower and cosmetics industries. The growth and development of rose plants is affected by exposure to high temperature. Histone acetylation plays an important role in plant development and responses to various stresses. It is a dynamic and reversible process mediated by histone deacetylases (HDAC) and histone acetyltransferases (HAT). However, information on HDAC and HAT genes of roses is scarce. Here, 23 HDAC genes and 10 HAT genes were identified in the Rosa chinensis 'Old Blush' genome. Their gene structures, conserved motifs, physicochemical properties, phylogeny, and synteny were assessed. Analyses of the expression of HDAC and HAT genes using available RNAseq data showed that these genes exhibit different expression patterns in different organs of the three analyzed rose cultivars. After heat stress, while the expression of most HDAC genes tend to be down-regulated, that of HAT genes was up-regulated when rose plants were grown at high-temperature conditions. These data suggest that rose likely respond to high-temperature exposure via modification in histone acetylation, and, thus, paves the way to more studies in order to elucidate in roses the molecular mechanisms underlying rose plants development and flowering.


Asunto(s)
Rosa , Acetilación , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Histonas/genética , Histonas/metabolismo , Rosa/genética
19.
Genes (Basel) ; 13(3)2022 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-35328100

RESUMEN

Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.


Asunto(s)
Rosa , Transferasas Alquil y Aril , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Estrés Fisiológico/genética , Terpenos/metabolismo
20.
iScience ; 25(1): 103696, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35059606

RESUMEN

Cucumis melo displays a large diversity of horticultural groups with cantaloupe melon the most cultivated type. Using a combination of single-molecule sequencing, 10X Genomics link-reads, high-density optical and genetic maps, and chromosome conformation capture (Hi-C), we assembled a chromosome scale C. melo var. cantalupensis Charentais mono genome. Integration of RNA-seq, MeDip-seq, ChIP-seq, and Hi-C data revealed a widespread compartmentalization of the melon genome, segregating constitutive heterochromatin and euchromatin. Genome-wide comparative and evolutionary analysis between melon botanical groups identified Charentais mono genome increasingly more divergent from Harukei-3 (reticulatus), Payzawat (inodorus), and HS (ssp. agrestis) genomes. To assess the paleohistory of the Cucurbitaceae, we reconstructed the ancestral Cucurbitaceae karyotype and compared it to sequenced cucurbit genomes. In contrast to other species that experienced massive chromosome shuffling, melon has retained the ancestral genome structure. We provide comprehensive genomic resources and new insights in the diversity of melon horticultural groups and evolution of cucurbits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA