Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(5)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38124010

RESUMEN

White matter dysmaturation is commonly seen in preterm infants admitted to the neonatal intensive care unit (NICU). Animal research has shown that active sleep is essential for early brain plasticity. This study aimed to determine the potential of active sleep as an early predictor for subsequent white matter development in preterm infants. Using heart and respiratory rates routinely monitored in the NICU, we developed a machine learning-based automated sleep stage classifier in a cohort of 25 preterm infants (12 females). The automated classifier was subsequently applied to a study cohort of 58 preterm infants (31 females) to extract active sleep percentage over 5-7 consecutive days during 29-32 weeks of postmenstrual age. Each of the 58 infants underwent high-quality T2-weighted magnetic resonance brain imaging at term-equivalent age, which was used to measure the total white matter volume. The association between active sleep percentage and white matter volume was examined using a multiple linear regression model adjusted for potential confounders. Using the automated classifier with a superior sleep classification performance [mean area under the receiver operating characteristic curve (AUROC) = 0.87, 95% CI 0.83-0.92], we found that a higher active sleep percentage during the preterm period was significantly associated with an increased white matter volume at term-equivalent age [ß = 0.31, 95% CI 0.09-0.53, false discovery rate (FDR)-adjusted p-value = 0.021]. Our results extend the positive association between active sleep and early brain development found in animal research to human preterm infants and emphasize the potential benefit of sleep preservation in the NICU setting.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Lactante , Femenino , Humanos , Recién Nacido , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sueño
2.
J Pediatr ; 265: 113807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923196

RESUMEN

OBJECTIVE: To evaluate whether a high cumulative dose of systemic hydrocortisone affects brain development compared with placebo when initiated between 7 and 14 days after birth in ventilated infants born preterm. STUDY DESIGN: A double-blind, placebo-controlled, randomized trial was conducted in 16 neonatal intensive care units among infants born at <30 weeks of gestation or with a birth weight of <1250 g who were ventilator-dependent in the second week after birth. Three centers performed MRI at term-equivalent age. Brain injury was assessed on MRI using the Kidokoro scoring system and compared between the 2 treatment groups. Both total and regional brain volumes were calculated using an automatic segmentation method and compared using multivariable regression analysis adjusted for baseline variables. RESULTS: From the 3 centers, 78 infants participated in the study and 59 had acceptable MRI scans (hydrocortisone group, n = 31; placebo group, n = 28). Analyses of the median global brain abnormality score of the Kidokoro score showed no difference between the hydrocortisone and placebo groups (median, 7; IQR, 5-9 vs median, 8, IQR, 4-10, respectively; P = .92). In 39 infants, brain tissue volumes were measured, showing no differences in the adjusted mean total brain tissue volumes, at 352 ± 32 mL in the hydrocortisone group and 364 ± 51 mL in the placebo group (P = .80). CONCLUSIONS: Systemic hydrocortisone started in the second week after birth in ventilator-dependent infants born very preterm was not found to be associated with significant differences in brain development compared with placebo treatment. TRIAL REGISTRATION: The SToP-BPD study was registered with the Netherlands Trial Register (NTR2768; registered on 17 February 2011; https://www.trialregister.nl/trial/2640) and the European Union Clinical Trials Register (EudraCT, 2010-023777-19; registered on 2 November 2010; https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023777-19/NL).


Asunto(s)
Displasia Broncopulmonar , Hidrocortisona , Recién Nacido , Lactante , Humanos , Recien Nacido Prematuro , Displasia Broncopulmonar/tratamiento farmacológico , Ventiladores Mecánicos , Encéfalo/diagnóstico por imagen
3.
J Pediatr ; 266: 113838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37995930

RESUMEN

OBJECTIVE: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS: Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, ß = -0.50). SES was independently associated with cognitive outcome (P < .001, ß = 0.26), and LOS with motor outcome (P < .001, ß = -0.35). CONCLUSION: Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.


Asunto(s)
Lesiones Encefálicas , Cardiopatías Congénitas , Lactante , Humanos , Preescolar , Encéfalo/patología , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/complicaciones , Imagen por Resonancia Magnética , Factores de Riesgo
4.
Cereb Cortex ; 33(11): 6667-6680, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36702802

RESUMEN

Brain folding patterns vary within the human species, but some folding properties are common across individuals, including the Sylvian fissure's inter-hemispheric asymmetry. Contrarily to the other brain folds (sulci), the Sylvian fissure develops through the process of opercularization, with the frontal, parietal, and temporal lobes growing over the insular lobe. Its asymmetry may be related to the leftward functional lateralization for language processing, but the time course of these asymmetries' development is still poorly understood. In this study, we investigated refined shape features of the Sylvian fissure and their longitudinal development in 71 infants born extremely preterm (mean gestational age at birth: 26.5 weeks) and imaged once before and once at term-equivalent age (TEA). We additionally assessed asymmetrical sulcal patterns at TEA in the perisylvian and inferior frontal regions, neighbor to the Sylvian fissure. While reproducing renowned strong asymmetries in the Sylvian fissure, we captured an early encoding of its main asymmetrical shape features, and we observed global asymmetrical shape features representative of a more pronounced opercularization in the left hemisphere, contrasting with the previously reported right hemisphere advance in sulcation around birth. This added novel insights about the processes governing early-life brain folding mechanisms, potentially linked to the development of language-related capacities.


Asunto(s)
Lateralidad Funcional , Recien Nacido Prematuro , Lactante , Humanos , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología
5.
Phys Occup Ther Pediatr ; 44(1): 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37318108

RESUMEN

AIMS: To examine whether accelerometry can quantitate asymmetry of upper limb activity in infants aged 3-12 months at risk for developing unilateral spastic cerebral palsy (USCP). METHOD: A prospective study was performed in 50 infants with unilateral perinatal brain injury at high risk of developing USCP. Triaxial accelerometers were worn on the ipsilateral and contralesional upper limb during the Hand Assessment for Infants (HAI). Infants were grouped in three age intervals (3-5 months, 5-7.5 months and 7.5 until 12 months). Each age interval group was divided in a group with and without asymmetrical hand function based on HAI cutoff values suggestive of USCP. RESULTS: In a total of 82 assessments, the asymmetry index for mean upper limb activity was higher in infants with asymmetrical hand function compared to infants with symmetrical hand function in all three age groups (ranging from 41 to 51% versus - 2-6%, p < 0.01), while the total activity of both upper limbs did not differ. CONCLUSIONS: Upper limb accelerometry can identify asymmetrical hand function in the upper limbs in infants with unilateral perinatal brain injury from 3 months onwards and is complementary to the Hand Assessment for Infants.


Asunto(s)
Lesiones Encefálicas , Parálisis Cerebral , Lactante , Femenino , Embarazo , Humanos , Estudios Prospectivos , Extremidad Superior , Mano , Acelerometría , Lesiones Encefálicas/diagnóstico
6.
J Neurosci ; 42(48): 8948-8959, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36376077

RESUMEN

Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.


Asunto(s)
Conectoma , Nacimiento Prematuro , Lactante , Recién Nacido , Humanos , Preescolar , Femenino , Masculino , Recien Nacido Prematuro , Encéfalo/diagnóstico por imagen , Edad Gestacional , Imagen por Resonancia Magnética
7.
J Pediatr ; 254: 25-32, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36241053

RESUMEN

OBJECTIVE: To investigate the relation between duration of hemodynamically significant patent ductus arteriosus (PDA), cerebral oxygenation, magnetic resonance imaging-determined brain growth, and 2-year neurodevelopmental outcome in a cohort of infants born preterm whose duct was closed surgically. STUDY DESIGN: Infants born preterm at <30 weeks of gestational age who underwent surgical ductal closure between 2008 and 2018 (n = 106) were included in this observational study. Near infrared spectroscopy-monitored cerebral oxygen saturation during and up to 24 hours after ductal closure and a Bayley III developmental test at the corrected age of 2 years is the institutional standard of care for this patient group. Infants also had magnetic resonance imaging at term-equivalent age. RESULTS: In total, 90 infants fulfilled the inclusion criteria (median [range]: 25.9 weeks [24.0-28.9]; 856 g [540-1350]. Days of a PDA ranged from 1 to 41. Multivariable linear regression analysis showed that duration of a PDA negatively influenced cerebellar growth and motor and cognitive outcome at 2 years of corrected age. CONCLUSIONS: Prolonged duration of a PDA in this surgical cohort is associated with reduced cerebellar growth and suboptimal neurodevelopmental outcome.


Asunto(s)
Conducto Arterioso Permeable , Recién Nacido , Lactante , Humanos , Preescolar , Conducto Arterioso Permeable/cirugía , Recien Nacido Prematuro , Encéfalo/diagnóstico por imagen , Edad Gestacional
8.
J Pediatr ; 258: 113402, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019329

RESUMEN

OBJECTIVE: To assess the evolution of neonatal brain injury noted on magnetic resonance imaging (MRI), develop a score to assess brain injury on 3-month MRI, and determine the association of 3-month MRI with neurodevelopmental outcome in neonatal encephalopathy (NE) following perinatal asphyxia. METHODS: This was a retrospective, single-center study including 63 infants with perinatal asphyxia and NE (n = 28 cooled) with cranial MRI <2 weeks and 2-4 months after birth. Both scans were assessed using biometrics, a validated injury score for neonatal MRI, and a new score for 3-month MRI, with a white matter (WM), deep gray matter (DGM), and cerebellum subscore. The evolution of brain lesions was assessed, and both scans were related to 18- to 24-month composite outcome. Adverse outcome included cerebral palsy, neurodevelopmental delay, hearing/visual impairment, and epilepsy. RESULTS: Neonatal DGM injury generally evolved into DGM atrophy and focal signal abnormalities, and WM/watershed injury evolved into WM and/or cortical atrophy. Although the neonatal total and DGM scores were associated with composite adverse outcomes, the 3-month DGM score (OR 1.5, 95% CI 1.2-2.0) and WM score (OR 1.1, 95% CI 1.0-1.3) also were associated with composite adverse outcomes (occurring in n = 23). The 3-month multivariable model (including the DGM and WM subscores) had higher positive (0.88 vs 0.83) but lower negative predictive value (0.83 vs 0.84) than neonatal MRI. Inter-rater agreement for the total, WM, and DGM 3-month score was 0.93, 0.86, and 0.59. CONCLUSIONS: In particular, DGM abnormalities on 3-month MRI, preceded by DGM abnormalities on the neonatal MRI, were associated with 18- to 24-month outcome, indicating the utility of 3-month MRI for treatment evaluation in neuroprotective trials. However, the clinical usefulness of 3-month MRI seems limited compared with neonatal MRI.


Asunto(s)
Asfixia Neonatal , Lesiones Encefálicas , Enfermedades del Recién Nacido , Recién Nacido , Embarazo , Femenino , Lactante , Humanos , Estudios Retrospectivos , Asfixia/complicaciones , Imagen por Resonancia Magnética/métodos , Asfixia Neonatal/complicaciones , Asfixia Neonatal/diagnóstico por imagen , Lesiones Encefálicas/patología , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Pediatr Res ; 93(2): 437-439, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526854

RESUMEN

In recent years, data have become the main driver of medical innovation. With increased availability and decreased price of storage and computing power, the potential for improvement in care is enormous. Many data-driven explorations have started. However, the actual implementation of artificial intelligence in healthcare remains scarce. We describe essential elements during a computer-to-bedside process in a data science project that support the crucial role of the neonatologist. IMPACT: There is a great potential for data science in neonatal medicine. Multidisciplinary teams form the foundation of a data science project. Domain experts will need to play a pivotal role. We need an open learning environment.


Asunto(s)
Inteligencia Artificial , Medicina , Recién Nacido , Humanos , Neonatólogos , Computadores , Atención a la Salud
10.
Pediatr Res ; 94(4): 1265-1272, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37217607

RESUMEN

BACKGROUND: There is growing evidence that neonatal surgery for non-cardiac congenital anomalies (NCCAs) in the neonatal period adversely affects long-term neurodevelopmental outcome. However, less is known about acquired brain injury after surgery for NCCA and abnormal brain maturation leading to these impairments. METHODS: A systematic search was performed in PubMed, Embase, and The Cochrane Library on May 6, 2022 on brain injury and maturation abnormalities seen on magnetic resonance imaging (MRI) and its associations with neurodevelopment in neonates undergoing NCCA surgery the first month postpartum. Rayyan was used for article screening and ROBINS-I for risk of bias assessment. Data on the studies, infants, surgery, MRI, and outcome were extracted. RESULTS: Three eligible studies were included, reporting 197 infants. Brain injury was found in n = 120 (50%) patients after NCCA surgery. Sixty (30%) were diagnosed with white matter injury. Cortical folding was delayed in the majority of cases. Brain injury and delayed brain maturation was associated with a decrease in neurodevelopmental outcome at 2 years of age. CONCLUSIONS: Surgery for NCCA was associated with high risk of brain injury and delay in maturation leading to delay in neurocognitive and motor development. However, more research is recommended for strong conclusions in this group of patients. IMPACT: Brain injury was found in 50% of neonates who underwent NCCA surgery. NCCA surgery is associated with a delay in cortical folding. There is an important research gap regarding perioperative brain injury and NCCA surgery.


Asunto(s)
Lesiones Encefálicas , Recién Nacido , Lactante , Femenino , Humanos , Lesiones Encefálicas/cirugía , Lesiones Encefálicas/patología , Encéfalo , Imagen por Resonancia Magnética/métodos
11.
Pediatr Res ; 93(1): 168-175, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35414671

RESUMEN

BACKGROUND: Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe. METHODS: An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics. RESULTS: Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%. CONCLUSIONS: Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed. IMPACT: There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Cardiopatías Congénitas , Recién Nacido , Niño , Humanos , Estudios de Seguimiento , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/complicaciones , Neuroimagen/métodos , Encuestas y Cuestionarios
12.
Pediatr Res ; 93(3): 666-674, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681088

RESUMEN

BACKGROUND: Growth factors important for normal brain development are low in preterm infants. This study investigated the link between growth factors and preterm brain volumes at term. MATERIAL/METHODS: Infants born <28 weeks gestational age (GA) were included. Endogenous levels of insulin-like growth factor (IGF)-1, brain-derived growth factor, vascular endothelial growth factor, and platelet-derived growth factor (expressed as area under the curve [AUC] for serum samples from postnatal days 1, 7, 14, and 28) were utilized in a multivariable linear regression model. Brain volumes were determined by magnetic resonance imaging (MRI) at term equivalent age. RESULTS: In total, 49 infants (median [range] GA 25.4 [22.9-27.9] weeks) were included following MRI segmentation quality assessment and AUC calculation. IGF-1 levels were independently positively associated with the total brain (p < 0.001, ß = 0.90), white matter (p = 0.007, ß = 0.33), cortical gray matter (p = 0.002, ß = 0.43), deep gray matter (p = 0.008, ß = 0.05), and cerebellar (p = 0.006, ß = 0.08) volume adjusted for GA at birth and postmenstrual age at MRI. No associations were seen for other growth factors. CONCLUSIONS: Endogenous exposure to IGF-1 during the first 4 weeks of life was associated with total and regional brain volumes at term. Optimizing levels of IGF-1 might improve brain growth in extremely preterm infants. IMPACT: High serum levels of insulin-like growth factor (IGF)-1 during the first month of life were independently associated with increased total brain volume, white matter, gray matter, and cerebellar volume at term equivalent age in extremely preterm infants. IGF-1 is a critical regulator of neurodevelopment and postnatal levels are low in preterm infants. The effects of IGF-1 levels on brain development in extremely preterm infants are not fully understood. Optimizing levels of IGF-1 may benefit early brain growth in extremely preterm infants. The effects of systemically administered IGF-1/IGFBP3 in extremely preterm infants are now being investigated in a randomized controlled trial (Clinicaltrials.gov: NCT03253263).


Asunto(s)
Recien Nacido Extremadamente Prematuro , Factor I del Crecimiento Similar a la Insulina , Lactante , Humanos , Recién Nacido , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Encéfalo , Sustancia Gris/metabolismo , Edad Gestacional , Imagen por Resonancia Magnética/métodos
13.
Pediatr Res ; 94(1): 20-33, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36575364

RESUMEN

BACKGROUND AND AIMS: Perinatal arterial ischemic stroke (PAIS) often has lifelong neurodevelopmental consequences. We aimed to review early predictors (<4 months of age) of long-term outcome. METHODS: We carried out a systematic literature search (PubMed and Embase), and included articles describing term-born infants with PAIS that underwent a diagnostic procedure within four months of age, and had any reported outcome parameter ≥12 months of age. Two independent reviewers included studies and performed risk of bias analysis. RESULTS: We included 41 articles reporting on 1395 infants, whereof 1255 (90%) infants underwent follow-up at a median of 4 years. A meta-analysis was performed for the development of cerebral palsy (n = 23 studies); the best predictor was the qualitative or quantitative assessment of the corticospinal tracts on MRI, followed by standardized motor assessments. For long-term cognitive functioning, bedside techniques including (a)EEG and NIRS might be valuable. Injury to the optic radiation on DTI correctly predicted visual field defects. No predictors could be identified for behavior, language, and post-neonatal epilepsy. CONCLUSION: Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS. Future research should be focused on improving outcome prediction for non-motor outcomes. IMPACT: We present a systematic review of early predictors for various long-term outcome categories after perinatal arterial ischemic stroke (PAIS), including a meta-analysis for the outcome unilateral spastic cerebral palsy. Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS, while bedside techniques such as (a)EEG and NIRS might improve cognitive outcome prediction. Future research should be focused on improving outcome prediction for non-motor outcomes.


Asunto(s)
Parálisis Cerebral , Enfermedades del Recién Nacido , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Recién Nacido , Lactante , Humanos , Accidente Cerebrovascular/diagnóstico , Parálisis Cerebral/diagnóstico , Imagen por Resonancia Magnética
14.
Pediatr Res ; 93(6): 1480-1490, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36085366

RESUMEN

OBJECTIVES: To evaluate punctate white matter lesion (PWML) influence in preterm infants on the long-term neurodevelopmental outcome (NDO). METHODS: PubMed and EMBASE were searched from January 1, 2000, to May 31, 2021. Studies were included in which PWML in preterm infants on MRI around term-equivalent age (TEA) and NDO at ≥12 months were reported. Study and patient characteristics and NDO on motor, cognitive, and behavioral domains were extracted. The quality of studies was assessed using the Cochrane-approved Quality in Prognosis Studies tool. RESULTS: This analysis included nine studies with a total of 1655 patients. Mean incidence of isolated PWML was 22.1%. All studies showed a relationship between PWML and motor delay. Two studies found a significant correlation between cognitive and behavioral outcomes and PWML. Number and PWML location are related to severity and impairment types. LIMITATIONS: PWML were not always separately described from generalized WMI, only studies with imaging around TEA were included, and studies were heterogenic in design and quality. CONCLUSIONS: PWML is common in preterm infants and predictive of adverse NDO, in particular on motor outcomes and less on cognitive and behavioral outcomes. The type and severity of impairments are related to the number and location of PMWL. IMPACT: PWML is common in preterm infants and seems predictive of adverse NDO. DWI and SWI MRI sequences are informative because the different patterns suggest a difference in the underlying pathology. The type and severity of impairments are related to the number and location of PMWL. Our review can inform clinicians and parents about the NDO of preterm infants with a diagnosis of PWML. Prospective neuroimaging case-control cohort studies are recommended.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Lactante , Recién Nacido , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios de Casos y Controles , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos
15.
Pediatr Res ; 93(7): 1819-1827, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36195634

RESUMEN

Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.


Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Enfermedades del Recién Nacido , Fármacos Neuroprotectores , Recién Nacido , Niño , Humanos , Lactante , Neuroprotección , Unidades de Cuidado Intensivo Neonatal , Enfermedades del Recién Nacido/terapia , Lesiones Encefálicas/terapia , Fármacos Neuroprotectores/uso terapéutico
16.
Pediatr Res ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147439

RESUMEN

White matter (WM) injury is the most common type of brain injury in preterm infants and is associated with impaired neurodevelopmental outcome (NDO). Currently, there are no treatments for WM injury, but optimal nutrition during early preterm life may support WM development. The main aim of this scoping review was to assess the influence of early postnatal nutrition on WM development in preterm infants. Searches were performed in PubMed, EMBASE, and COCHRANE on September 2022. Inclusion criteria were assessment of preterm infants, nutritional intake before 1 month corrected age, and WM outcome. Methods were congruent with the PRISMA-ScR checklist. Thirty-two articles were included. Negative associations were found between longer parenteral feeding duration and WM development, although likely confounded by illness. Positive associations between macronutrient, energy, and human milk intake and WM development were common, especially when fed enterally. Results on fatty acid and glutamine supplementation remained inconclusive. Significant associations were most often detected at the microstructural level using diffusion magnetic resonance imaging. Optimizing postnatal nutrition can positively influence WM development and subsequent NDO in preterm infants, but more controlled intervention studies using quantitative neuroimaging are needed. IMPACT: White matter brain injury is common in preterm infants and associated with impaired neurodevelopmental outcome. Optimizing postnatal nutrition can positively influence white matter development and subsequent neurodevelopmental outcome in preterm infants. More studies are needed, using quantitative neuroimaging techniques and interventional designs controlling for confounders, to define optimal nutritional intakes in preterm infants.

17.
Dev Med Child Neurol ; 65(8): 1053-1060, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36649164

RESUMEN

AIM: To investigate the association between morphine exposure in the neonatal period and neurodevelopment at 2 and 5 years of age while controlling for potential confounders. METHOD: We performed a retrospective, single-centre cohort study on 106 infants (60 males, 46 females; mean gestational age 26 weeks [SD 1]) born extremely preterm (gestational age < 28 weeks). Morphine administration was expressed as cumulative dose (mg/kg) until term-equivalent age. Neurodevelopmental outcome was assessed at 2 years with the Bayley Scales of Infant and Toddler Development, Third Edition, Dutch version and at 5 years with the Wechsler Preschool and Primary Scale of Intelligence, Third Edition, Dutch version. Multiple linear regression analysis was used to assess the association between morphine exposure and outcome. RESULTS: Sixty-four out of 106 (60.4%) infants included in the study received morphine. Morphine exposure was not associated with poorer motor, cognitive, and language subscores of the Bayley Scales of Infant and Toddler Development, Third Edition, Dutch version at 2 years. Morphine exposure was associated with lower Full-Scale IQ scores (p = 0.008, B = -9.3, 95% confidence interval [CI] = -15.6 to -3.1) and Performance IQ scores (p = 0.005, B = -17.5, 95% CI = -27.9 to -7) at 5 years of age. INTERPRETATION: Morphine exposure in infants born preterm is associated with poorer Full-Scale IQ and Performance IQ at 5 years. Individualized morphine administration is advised in infants born extremely preterm.


Asunto(s)
Desarrollo Infantil , Recien Nacido Extremadamente Prematuro , Recién Nacido , Masculino , Femenino , Preescolar , Humanos , Lactante , Estudios de Cohortes , Morfina/efectos adversos , Estudios Retrospectivos
18.
Am J Perinatol ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075786

RESUMEN

OBJECTIVE: During the early weeks of life optimization of nutrition in extremely preterm infants presents a critical opportunity to attenuate the adverse neurological consequences of prematurity and potentially improve neurodevelopmental outcome. We hypothesized that the use of multicomponent lipid emulsion (MLE) in parenteral nutrition (PN) would be related to larger volume of the cerebellum on brain magnetic resonance at term of equivalent age (TEA) in extremely low birth weight (ELBW) infants. STUDY DESIGN: We analyzed the brain magnetic resonance imaging (MRI) at TEA of a cohort of preterm infants with gestational age ≤28 weeks and/or birth weight <1,000 g randomly assigned in our previous trial to receive an MLE or soybean-based lipid emulsion (SLE). The primary outcome of the study was the cerebellar volume (CeV), valued on MRI acquired at TEA. Secondary outcomes included total brain volume (TBV), supratentorial volume, brainstem volume, and CeV corrected for TBV evaluated on MRI acquired at TEA. RESULTS: MRIs at TEA of 34 infants were then analyzed: 17 in the MLE group and 17 in the SLE group. The postmenstrual age (PMA) at which MRIs were performed were comparable between the two study groups. The CeV as well as the PMA-corrected CeV were significantly higher in the MLE group than in the SLE group. No difference was found among the other brain volumes considered. CONCLUSION: Our results suggest that the use of MLE in PN could promote CeV growth in ELBW infants, valued with MRI at TEA. KEY POINTS: · Optimization of nutrition in extremely low birthweight infants.. · Use of multicomponent lipid emulsions in parenteral nutrition.. · Larger cerebellar volume with use of multicomponent lipid emulsion..

19.
Stroke ; 53(12): 3652-3661, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36300371

RESUMEN

BACKGROUND: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors.


Asunto(s)
Lesiones Encefálicas , Cardiopatías Congénitas , Accidente Cerebrovascular Isquémico , Transposición de los Grandes Vasos , Trombosis de la Vena , Lactante , Recién Nacido , Femenino , Humanos , Transposición de los Grandes Vasos/cirugía , Transposición de los Grandes Vasos/complicaciones , Transposición de los Grandes Vasos/patología , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/complicaciones , Factores de Riesgo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Trombosis de la Vena/complicaciones
20.
Neuroimage ; 251: 118837, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965455

RESUMEN

Despite growing evidence of links between sulcation and function in the adult brain, the folding dynamics, occurring mostly before normal-term-birth, is vastly unknown. Looking into the development of cortical sulci in infants can give us keys to address fundamental questions: what is the sulcal shape variability in the developing brain? When are the shape features encoded? How are these morphological parameters related to further functional development? In this study, we aimed to investigate the shape variability of the developing central sulcus, which is the frontier between the primary somatosensory and motor cortices. We studied a cohort of 71 extremely preterm infants scanned twice using MRI - once around 30 weeks post-menstrual age (w PMA) and once at term-equivalent age, around 40w PMA -, in order to quantify the sulcus's shape variability using manifold learning, regardless of age-group or hemisphere. We then used these shape descriptors to evaluate the sulcus's variability at both ages and to assess hemispheric and age-group specificities. This led us to propose a description of ten shape features capturing the variability in the central sulcus of preterm infants. Our results suggested that most of these features (8/10) are encoded as early as 30w PMA. We unprecedentedly observed hemispheric asymmetries at both ages, and the one captured at term-equivalent age seems to correspond with the asymmetry pattern previously reported in adults. We further trained classifiers in order to explore the predictive value of these shape features on manual performance at 5 years of age (handedness and fine motor outcome). The central sulcus's shape alone showed a limited but relevant predictive capacity in both cases. The study of sulcal shape features during early neurodevelopment may participate to a better comprehension of the complex links between morphological and functional organization of the developing brain.


Asunto(s)
Encéfalo , Corteza Motora , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA