Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195076

RESUMEN

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Asunto(s)
Infecciones Bacterianas/inmunología , Plaquetas/inmunología , Animales , Bacterias/clasificación , Plaquetas/citología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Calcio/metabolismo , Movimiento Celular , Polaridad Celular , Humanos , Inflamación/inmunología , Integrinas/metabolismo , Ratones , Miosinas/metabolismo , Neutrófilos/citología
2.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469774

RESUMEN

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Interleucina-2/inmunología , Macrófagos del Hígado/inmunología , Animales , Hepatitis B/inmunología , Tolerancia Inmunológica/inmunología , Ratones , Ratones Transgénicos
3.
Nature ; 574(7777): 200-205, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582858

RESUMEN

The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/inmunología , Virus de la Hepatitis B/inmunología , Hepatocitos/inmunología , Hepatocitos/virología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Femenino , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Humanos , Tolerancia Inmunológica , Interleucina-2/inmunología , Interleucina-2/uso terapéutico , Macrófagos del Hígado/inmunología , Activación de Linfocitos , Masculino , Ratones , Transcriptoma/genética
4.
Immunity ; 41(2): 296-310, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25065623

RESUMEN

Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed that microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is a ligand for PXR in vivo, and IPA downregulated enterocyte TNF-α while it upregulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2(-/-)) mice showed a distinctly "leaky" gut physiology coupled with upregulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2(-/-)Tlr4(-/-) mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway that involves luminal sensing and signaling by TLR4.


Asunto(s)
Intestinos/inmunología , Receptores de Esteroides/inmunología , Uniones Estrechas/inmunología , Receptor Toll-Like 4/inmunología , Uniones Adherentes/genética , Uniones Adherentes/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Anticuerpos/inmunología , Complejo CD3/inmunología , Células CACO-2 , Línea Celular , Femenino , Células HEK293 , Humanos , Indoles , Indometacina/farmacología , Inflamación/inmunología , Intestinos/microbiología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microbiota/inmunología , Receptor X de Pregnano , Interferencia de ARN , ARN Mensajero , ARN Interferente Pequeño , Receptores de Esteroides/genética , Daño por Reperfusión/inmunología , Transducción de Señal/inmunología , Uniones Estrechas/genética , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/biosíntesis
5.
Proc Natl Acad Sci U S A ; 113(8): 2182-7, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26862175

RESUMEN

Viral clearance requires effector T-cell egress from the draining lymph node (dLN). The mechanisms that regulate the complex process of effector T-cell egress from the dLN after infection are poorly understood. Here, we visualized endogenous pathogen-specific effector T-cell migration within, and from, the dLN. We used an inducible mouse model with a temporally disrupted sphingosine-1-phosphate receptor-1 (S1PR1) gene specifically in endogenous effector T cells. Early after infection, WT and S1PR1(-/-) effector T cells localized exclusively within the paracortex. This localization in the paracortex by CD8 T cells was followed by intranodal migration by both WT and S1PR1(-/-) T cells to positions adjacent to both cortical and medullary lymphatic sinuses where the T cells exhibited intense probing behavior. However, in contrast to WT, S1PR1(-/-) effector T cells failed to enter the sinuses. We demonstrate that, even when LN retention signals such as CC chemokine receptor 7 (CCR7) are down-regulated, T cell intrinsic S1PR1 is the master regulator of effector T-cell emigration from the dLN.


Asunto(s)
Infecciones/inmunología , Infecciones/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Receptores de Lisoesfingolípidos/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Animales , Movimiento Celular/inmunología , Células Endoteliales/inmunología , Células Endoteliales/patología , Activación de Linfocitos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Lisoesfingolípidos/deficiencia , Receptores de Lisoesfingolípidos/genética , Receptores de Esfingosina-1-Fosfato , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/patología , Virus de la Estomatitis Vesicular Indiana
6.
J Hepatol ; 66(1): 228-233, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27423427

RESUMEN

Antigen-specific effector CD8+ T cells play a critical role in controlling hepatic infections, such as the one caused by hepatitis B virus (HBV). We review here recent results where we coupled advanced dynamic imaging with dedicated mouse models of HBV pathogenesis to show that circulating effector CD8+ T cells aimed at viral clearance initially arrest in liver sinusoids by preferentially docking onto platelets that have previously adhered to liver sinusoids. Upon detachment from platelets, effector CD8+ T cells crawl within the sinusoids irrespective of bloodstream direction, and probe underlying hepatocytes for the presence of antigen by extending filopodia-like protrusions through the sinusoidal fenestrae. Effector CD8+ T cells recognize hepatocellular antigen and perform effector functions (i.e., IFN-γ production and hepatocyte killing) while still in the intravascular space. They later extravasate in the parenchyma. Finally, we provide our perspective on how, in the next few years, intravital microscopy might shed new light on yet unresolved issues with particular regard to identifying the determinants of hepatic effector CD8+ T cell trafficking, antigen recognition and effector functions during hepatocellular carcinoma and understanding the mechanisms whereby intrahepatic T cell priming induces functionally defective T cell responses. A better understanding of how adaptive immunity mediates pathogen clearance and tumor elimination may lead to improved vaccination and treatment strategies for immunotherapy of infectious diseases and cancer.


Asunto(s)
Hepatitis B , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Hepatitis B/inmunología , Hepatitis B/virología , Virus de la Hepatitis B/inmunología , Ratones , Modelos Inmunológicos
7.
J Hepatol ; 67(3): 543-548, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28483675

RESUMEN

BACKGROUND & AIMS: Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8+ T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. METHODS: Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8+ T cell-derived IL-10 in liver immunopathology. RESULTS: Mouse HBV-specific effector CD8+ T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8+ T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8+ T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8+ T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8+ T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. CONCLUSION: Effector CD8+ T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8+ T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8+ T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-10/fisiología , Hígado/inmunología , Enfermedad Aguda , Animales , Apoptosis , Virus de la Hepatitis B/inmunología , Humanos , Interleucina-2/farmacología , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pan troglodytes
8.
J Immunol ; 195(11): 5227-36, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26500349

RESUMEN

CCR7 is an important chemokine receptor that regulates T cell trafficking and compartmentalization within secondary lymphoid organs. However, the T cell-intrinsic role of CCR7 during infection in the spleen is not well understood. This study was designed to understand how CCR7-dependent localization and migration of CD8(+) T cells in different compartments of the spleen affected the primary and recall responses after infection. To this end, we used adoptive transfer of naive Ag-specific CD8 T cells (OT-I) that either lacked CCR7 or constitutively expressed CCR7 (CD2-CCR7) in mice that were subsequently infected i.v. with Listeria monocytogenes. We show that naive CCR7(-/-)CD8(+) T cells failed to enter the T cell zone, whereas CD2-CCR7 OT-I cells were exclusively confined to the T cell zones of the spleen. Surprisingly, however, CCR7(-/-) OT-I cells entered the T cell zones after infection, but the entry and egress migratory pattern of these cells was dysregulated and very distinct compared with wild-type OT-I cells. Moreover, CCR7-deficient OT-I cells failed to expand robustly when compared with wild-type OT-I cells and were preferentially skewed toward a short-lived effector cell differentiation pattern. Interestingly, CCR7(-/-), CD2-CCR7, and wild-type OT-I memory cells responded equally well to rechallenge infection. These results highlight a novel role of CCR7 in regulating effector CD8 T cell migration in the spleen and demonstrate differential requirement of CCR7 for primary and secondary CD8 T cell responses to infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Listeria monocytogenes/inmunología , Receptores CCR7/genética , Bazo/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Memoria Inmunológica/inmunología , Listeriosis/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR7/biosíntesis , Bazo/citología
9.
Cell Death Discov ; 10(1): 157, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548753

RESUMEN

The malignant microenvironment plays a major role in the development of resistance to therapies and the occurrence of relapses in acute myeloid leukemia (AML). We previously showed that interactions of AML blasts with bone marrow macrophages (MΦ) shift their polarization towards a protumoral (M2-like) phenotype, promoting drug resistance; we demonstrated that inhibiting the colony-stimulating factor-1 receptor (CSF1R) repolarizes MΦ towards an antitumoral (M1-like) phenotype and that other factors may be involved. We investigated here macrophage migration inhibitory factor (MIF) as a target in AML blast survival and protumoral interactions with MΦ. We show that pharmacologically inhibiting MIF secreted by AML blasts results in their apoptosis. However, this effect is abrogated when blasts are co-cultured in close contact with M2-like MΦ. We next demonstrate that pharmacological inhibition of MIF secreted by MΦ, in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF), efficiently reprograms MΦ to an M1-like phenotype that triggers apoptosis of interacting blasts. Furthermore, contact with reprogrammed MΦ relieves blast resistance to venetoclax and midostaurin acquired in contact with CD163+ protumoral MΦ. Using intravital imaging in mice, we also show that treatment with MIF inhibitor 4-IPP and GM-CSF profoundly affects the tumor microenvironment in vivo: it strikingly inhibits tumor vasculature, reduces protumoral MΦ, and slows down leukemia progression. Thus, our data demonstrate that MIF plays a crucial role in AML MΦ M2-like protumoral phenotype that can be reversed by inhibiting its activity and suggest the therapeutic targeting of MIF as an avenue towards improved AML treatment outcomes.

10.
Cancer Immunol Res ; 8(10): 1287-1299, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759362

RESUMEN

Live cells are the most abundant sources of antigen in a tumor-bearing host. Here, we used live tumor cells as source of antigens to investigate the mechanism underlying their immunogenicity in murine tumor models. The live tumor cells were significantly more immunogenic than irradiated or apoptotic tumor cells. We examined the interaction of live and apoptotic tumor cells with major subsets of antigen-presenting cells, i.e., CD8α+ dendritic cells (DC), CD8α- DCs, plasmacytoid DCs, and CD169+ macrophages at skin draining lymph nodes. The CD8α+ DCs captured cell-associated antigens from both live and apoptotic tumor cells, whereas CD169+ macrophages picked up cell-associated antigens mostly from apoptotic tumor cells. Trogocytosis and cross-dressing of membrane-associated antigenic material from live tumor cells to CD8α+ DCs was the primary mechanism for cross-priming of tumor antigens upon immunization with live cells. Phagocytosis of apoptotic tumor cells was the primary mechanism for cross-priming of tumor antigens upon immunization with apoptotic or irradiated cells. These findings clarify the mechanism of cross-priming of cancer antigens by DCs, allowing for a greater understanding of antitumor immune responses.


Asunto(s)
Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Animales , Antígenos CD8/inmunología , Proliferación Celular/fisiología , Femenino , Humanos , Ratones
11.
Methods Mol Biol ; 1514: 49-61, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27787791

RESUMEN

T cells play critical roles in controlling hepatotropic viral infections and liver tumors. The protective capacity of these cells is mediated by antigen-experienced effector cells and depends on their ability to migrate to and traffic within the liver, recognize pathogen- or tumor-derived antigens, get activated and deploy effector functions.While some of the rules that characterize T cell behavior in the healthy and cancerous antigen-expressing liver have been characterized at the population level, we have only limited knowledge of the precise dynamics of T cell interactions with different kinds of liver cells at the single-cell level. Here, we describe in detail an intravital microscopy technique that allows the analysis of T cell dynamic behavior in the liver of anesthetized mice at high spatial and temporal resolution. A detailed understanding of the spatiotemporal dynamics of T cells within the liver is important for the rational design of targeted immunotherapeutic approaches for chronic liver infections and tumors.


Asunto(s)
Antígenos/inmunología , Microscopía Intravital/métodos , Neoplasias Hepáticas/inmunología , Linfocitos T/inmunología , Animales , Humanos , Hígado/inmunología , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Linfocitos T/patología
12.
Methods Mol Biol ; 1591: 59-71, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28349475

RESUMEN

Local anatomy of lymphoid tissues during infection has emerged as a critical regulator of immunity; thus, studying the cellular choreography in the context of an intact tissue environment in situ is crucial. Following an infection, the local pathogen-specific T cell migration and the subsequent egress of effector T cells from the draining lymph nodes are important and complex biological processes. The mechanisms that regulate this complex process can now be investigated by directly visualizing T cell dynamics in vivo using intravital two-photon (2P) microscopy. In addition, static whole-mount imaging technique can provide us with a comprehensive assessment of global changes in the distribution of cellular populations within an intact tissue. Thus, in this chapter, we detail methods to visualize the migration and egress of endogenous antigen-specific CD8 T cells following viral infection using two methods-intravital 2P microscopy and multicolor whole-mount in situ tetramer staining.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ganglios Linfáticos/inmunología , Animales , Antígenos/inmunología , Movimiento Celular/inmunología , Tejido Linfoide/inmunología , Ratones
13.
Front Immunol ; 5: 363, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120547

RESUMEN

Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen-specific T cells persists as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in situ visualization of T cell responses. Here, we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naïve, effector, and memory T cells.

14.
J Leukoc Biol ; 95(2): 215-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24006506

RESUMEN

Previous studies have shown that some respiratory virus infections leave local populations of tissue TRM cells in the lungs which disappear as heterosubtypic immunity declines. The location of these TRM cells and their contribution to the protective CTL response have not been clearly defined. Here, fluorescence microscopy is used to show that some CD103(+) TRM cells remain embedded in the walls of the large airways long after pulmonary immunization but are absent from systemically primed mice. Viral clearance from the lungs of the locally immunized mice precedes the development of a robust Teff response in the lungs. Whereas large numbers of virus-specific CTLs collect around the bronchial tree during viral clearance, there is little involvement of the remaining lung tissue. Much larger numbers of TEM cells enter the lungs of the systemically immunized animals but do not prevent extensive viral replication or damage to the alveoli. Together, these experiments show that virus-specific antibodies and TRM cells are both required for optimal heterosubtypic immunity, whereas circulating memory CD8 T cells do not substantially alter the course of disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Protección Cruzada/inmunología , Virus de la Influenza A/inmunología , Pulmón/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Animales , Anticuerpos Antivirales/inmunología , Antígenos CD/metabolismo , Proliferación Celular , Perros , Inmunización , Memoria Inmunológica , Cadenas alfa de Integrinas/metabolismo , Pulmón/patología , Activación de Linfocitos/inmunología , Células de Riñón Canino Madin Darby , Ratones , Infecciones por Orthomyxoviridae/inmunología , Ovalbúmina/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA