RESUMEN
Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
Asunto(s)
Proteínas Inhibidoras de la Diferenciación , Macrófagos del Hígado , Neoplasias , Animales , Humanos , Ratones , Células de la Médula Ósea/citología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linaje de la Célula , Células Madre Pluripotentes Inducidas/citología , Proteínas Inhibidoras de la Diferenciación/deficiencia , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Macrófagos del Hígado/citología , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Hígado/inmunología , Hígado/patología , Activación de Macrófagos , Proteínas de Neoplasias , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , FagocitosisRESUMEN
Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components, but interpretations of these experiments are clouded by the multiple functions of these proteins. Here, we used a Cre recombinase-mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12, or 14 in tetraploid immortalized murine embryonic fibroblasts. This methodology also involves the generation of a dicentric chromosome intermediate, which subsequently undergoes a series of breakage-fusion-bridge (BFB) cycles. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere-forming conditions and three of the four lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo Thus, these studies demonstrate a causative role for whole chromosome loss and the associated BFB-mediated instability in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.
Asunto(s)
Deleción Cromosómica , Cromosomas de los Mamíferos , Fibroblastos/metabolismo , Neoplasias Experimentales , Tetraploidía , Animales , Línea Celular Transformada , Línea Celular Tumoral , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Fibroblastos/patología , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patologíaRESUMEN
Inhibitor of DNA binding 1 (Id1) functions as an E protein inhibitor, and overexpression of Id1 is seen in acute myeloid leukemia (AML) patients. To define the effects of Id1 on leukemogenesis, we expressed MLL-AF9 in fetal liver (FL) cells or bone marrow (BM) cells isolated from wild-type, Id1(-/-), p21(-/-), or Id1(-/-)p21(-/-) mice, and transplanted them into syngeneic recipient mice. We found that although mice receiving MLL-AF9-transduced FL or BM cells develop AML, loss of Id1 significantly prolonged the median survival of mice receiving FL cells but accelerated leukemogenesis in recipients of BM cells. Deletion of Cdkn1a (p21), an Id1 target gene, can rescue the effect of Id1 loss in both models, suggesting that Cdkn1a is a critical target of Id1 in leukemogenesis. It has been suggested that the FL transplant model mimics human fetal-origin (infant) MLL fusion protein (FP)-driven leukemia, whereas the BM transplantation model resembles postnatal MLL leukemia; in fact, the analysis of clinical samples from patients with MLL-FP(+) leukemia showed that Id1 expression is elevated in the former and reduced in the latter type of MLL-FP(+) AML. Our findings suggest that Id1 could be a potential therapeutic target for infant MLL-AF9-driven leukemia.
Asunto(s)
Proteína 1 Inhibidora de la Diferenciación/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMEN
Transcriptional regulators are recurrently altered through translocations, deletions, or aberrant expression in acute myeloid leukemia (AML). Although critically important in leukemogenesis, the underlying pathogenetic mechanisms they trigger remain largely unknown. Here, we identified that Id1 (inhibitor of DNA binding 1) plays a pivotal role in acute myeloid leukemogenesis. Using genetically modified mice, we found that loss of Id1 inhibited t(8;21) leukemia initiation and progression in vivo by abrogating protein kinase B (AKT)1 activation, and that Id1 interacted with AKT1 through its C terminus. An Id1 inhibitor impaired the in vitro growth of AML cells and, when combined with an AKT inhibitor, triggered even greater apoptosis and growth inhibition, whereas normal hematopoietic stem/progenitor cells were largely spared. We then performed in vivo experiments and found that the Id1 inhibitor significantly prolonged the survival of t(8;21)(+) leukemic mice, whereas overexpression of activated AKT1 promoted leukemogenesis. Thus, our results establish Id1/Akt1 signaling as a potential therapeutic target in t(8;21) leukemia.
Asunto(s)
Proteína 1 Inhibidora de la Diferenciación/metabolismo , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Carcinogénesis , Línea Celular Tumoral , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Proteína 1 Inhibidora de la Diferenciación/deficiencia , Proteína 1 Inhibidora de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/antagonistas & inhibidores , Proteínas Inhibidoras de la Diferenciación/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal , Translocación GenéticaRESUMEN
Inhibitor of DNA binding (ID)-1 is important for angiogenesis during embryogenesis and tumor development. Whether ID1 expression in endothelial cells of the colon is required for normal response to injury is unknown. We demonstrate that Id1 is up-regulated in colonic endothelial cells in an experimental model of colitis and in the inflamed mucosa of patients with inflammatory bowel disease. Because prostaglandin E2 and tumor necrosis factor-α are also elevated in colitis, we determined whether these factors could induce ID1 transcription in cultured endothelial cells. Tumor necrosis factor-α stimulated ID1 transcription via early growth response 1 protein (Egr-1). By contrast, the induction of ID1 by prostaglandin E2 was mediated by cAMP response element-binding protein (CREB). To determine whether the increased ID1 levels in the endothelial cells of inflamed mucosa were an adaptive response that modulated the severity of tissue injury, Id1 was conditionally depleted in the endothelium of mice, which sensitized the mice to more severe chemical colitis, including more severe diarrhea, bleeding, and histological injury, and shorter colon compared with control mice. Moreover, depletion of Id1 in the vasculature was associated with increased CD31(+) aggregates and increased vascular permeability in inflamed mucosa compared with those in Id1 wild-type control mice. These results suggest that endothelial ID1 up-regulation in inflamed colonic mucosa is an adaptive response that modulates the severity of tissue injury.
Asunto(s)
Colitis/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/patología , Colon/metabolismo , Colon/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/metabolismo , Endotelio/patología , Humanos , Enfermedades Inflamatorias del Intestino/patología , Proteína 1 Inhibidora de la Diferenciación/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética , Regulación hacia ArribaRESUMEN
Inhibition of an initiating oncogene often leads to extensive tumour cell death, a phenomenon known as oncogene addiction. This has led to the search for compounds that specifically target and inhibit oncogenes as anticancer agents. However, there has been no systematic exploration of whether chromosomal instability generated as a result of deregulation of the mitotic checkpoint pathway, a frequent characteristic of solid tumours, has any effect on oncogene addiction. Here we show that induction of chromosome instability by overexpression of the mitotic checkpoint gene Mad2 in mice does not affect the regression of Kras-driven lung tumours when Kras is inhibited. However, tumours that experience transient Mad2 overexpression and consequent chromosome instability recur at markedly elevated rates. The recurrent tumours are highly aneuploid and have varied activation of pro-proliferative pathways. Thus, early chromosomal instability may be responsible for tumour relapse after seemingly effective anticancer treatments.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/metabolismo , Oncogenes/fisiología , Proteínas Proto-Oncogénicas p21(ras)/deficiencia , Aneuploidia , Animales , Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica/genética , Neoplasias Pulmonares/genética , Proteínas Mad2 , Ratones , Ratones Transgénicos , Recurrencia Local de Neoplasia/patología , Oncogenes/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismoRESUMEN
Mad2 is an essential component of the spindle checkpoint that blocks activation of Separase and dissolution of sister chromatids until microtubule attachment to kinetochores is complete. We show here that overexpression of Mad2 in transgenic mice leads to a wide variety of neoplasias, appearance of broken chromosomes, anaphase bridges, and whole-chromosome gains and losses, as well as acceleration of myc-induced lymphomagenesis. Moreover, continued overexpression of Mad2 is not required for tumor maintenance, unlike the majority of oncogenes studied to date. These results demonstrate that transient Mad2 overexpression and chromosome instability can be an important stimulus in the initiation and progression of different cancer subtypes.
Asunto(s)
Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Neoplasias/genética , Animales , Inestabilidad Cromosómica , Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Proteínas Mad2 , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Neoplasias/metabolismoRESUMEN
Satellite cells are muscle stem cells that have important roles in postnatal muscle growth and adult muscle regeneration. Although fast- and slow-dividing populations in activated satellite cells have been observed, the functional differences between them remain unclear. Here we elucidated the relationship between proliferation behaviour and satellite cell function. To assess the frequency of cell division, satellite cells isolated from mouse EDL muscle were labelled with the fluorescent dye PKH26, stimulated to proliferate and then sorted by FACS. The vast majority of activated satellite cells were PKH26(low) fast-dividing cells, whereas PKH26(high) slow-dividing cells were observed as a minority population. The fast-dividing cells generated a higher number of differentiated and self-renewed cells compared with the slow-dividing cells. However, cells derived from the slow-dividing population formed secondary myogenic colonies when passaged, whereas those from the fast-dividing population rapidly underwent myogenic differentiation without producing self-renewing cells after a few rounds of cell division. Furthermore, slow-dividing cells transplanted into injured muscle extensively contributed to muscle regeneration in vivo. Id1, a HLH protein, was expressed by all activated satellite cells, but the expression level varied within the slow-dividing cell population. We show that the slow-dividing cells retaining long-term self-renewal ability are restricted to an undifferentiated population that express high levels of Id1 protein (PKH26(high)Id1(high) population). Finally, genome-wide gene expression analysis described the molecular characteristics of the PKH26(high)Id1(high) population. Taken together, our results indicate that undifferentiated slow-dividing satellite cells retain stemness for generating progeny capable of long-term self-renewal, and so might be essential for muscle homeostasis throughout life.
Asunto(s)
División Celular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/fisiología , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Colorantes Fluorescentes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismoAsunto(s)
Organización de la Financiación/economía , Organización de la Financiación/estadística & datos numéricos , National Institutes of Health (U.S.)/economía , Investigadores/economía , Investigadores/psicología , Apoyo a la Investigación como Asunto/economía , Apoyo a la Investigación como Asunto/estadística & datos numéricosRESUMEN
Over the past few decades, biologists have identified key molecular signatures associated with a wide range of human cancers. Recently, animal models have been particularly useful in establishing whether such signatures have functional relevance; the overexpression of pro-oncogenic or loss of anti-oncogenic factors have been evaluated for their effects on various tumour models. The aim of this review is to analyze the potential role of the inhibitor of DNA binding (Id) proteins in cancer and examine whether deregulated Id activity is tumorigenic and contributes to hallmarks of malignancy, such as loss of differentiation (anaplasia), unrestricted proliferation and neoangiogenesis.
Asunto(s)
Biomarcadores de Tumor , Secuencias Hélice-Asa-Hélice/fisiología , Neoplasias/fisiopatología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Anaplasia/fisiopatología , Proliferación Celular , Humanos , Proteína 1 Inhibidora de la Diferenciación , Modelos Animales , Neovascularización Patológica/fisiopatologíaRESUMEN
Genetic and genomic aberrations are the primary cause of cancer. Chromosome missegregation leads to aneuploidy and provides cancer cells with a mechanism to lose tumor suppressor loci and gain extra copies of oncogenes. Using cytogenetic and array-based comparative genomic hybridization data, we analyzed numerical chromosome aneuploidy in 43,205 human tumors and found that 68% of solid tumors are aneuploid. In solid tumors, almost all chromosomes are more frequently lost than gained with chromosomes 7, 12 and 20 being the only exceptions with more frequent gains. Strikingly, small chromosomes are lost more readily than large ones, but no such inverse size correlation is observed with chromosome gains. Because of increasing levels of proteotoxic stress, chromosome gains have been shown to slow cell proliferation in a manner proportional to the number of extra gene copies gained. However, we find that the extra chromosome in trisomic tumors does not preferentially have a low gene copy number, suggesting that a proteotoxicity-mediated proliferation barrier is not sustained during tumor progression. Paradoxically, despite a bias toward chromosome loss, gains of chromosomes are a poor prognostic marker in ovarian adenocarcinomas. In addition, we find that solid and non-solid cancers have markedly distinct whole-chromosome aneuploidy signatures, which may underlie their fundamentally different etiologies. Finally, preferential chromosome loss is observed in both early and late stages of astrocytoma. Our results open up new avenues of enquiry into the role and nature of whole-chromosome aneuploidy in human tumors and will redirect modeling and genetic targeting efforts in patients.
Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Neoplasias/genética , Astrocitoma/genética , Neoplasias del Sistema Nervioso Central/genética , Hibridación Genómica Comparativa , Cistadenocarcinoma Seroso/genética , Femenino , Inestabilidad Genómica , Humanos , Cariotipo , Masculino , Estadificación de Neoplasias , Neoplasias/patología , Neoplasias Ováricas/genética , PronósticoRESUMEN
Negative bHLH transcription factor Hes1 can inhibit neural stem cells (NSCs) from precocious neurogenesis through repressing proneural gene expression; therefore, sustenance of Hes1 expression is crucial for NSC pool maintenance. Here we find that Ids, the dominant-negative regulators of proneural proteins, are expressed prior to proneural genes and share an overlapping expression pattern with Hes1 in the early neural tube of chick embryos. Overexpression of Id2 in the chick hindbrain upregulates Hes1 expression and inhibits proneural gene expression and neuronal differentiation. By contrast, Hes1 expression decreases, proneural gene expression expands, and neurogenesis occurs precociously in Id1;Id3 double knockout mice and in Id1-3 RNAi-electroporated chick embryos. Mechanistic studies show that Id proteins interact directly with Hes1 and release the negative feedback autoregulation of Hes1 without interfering with its ability to affect other target genes. These results indicate that Id proteins participate in NSC maintenance through sustaining Hes1 expression in early embryos.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Regulación hacia Abajo/genética , Homeostasis , Proteínas Inhibidoras de la Diferenciación/metabolismo , Neuronas/citología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteína 1 Inhibidora de la Diferenciación/deficiencia , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/deficiencia , Proteínas Inhibidoras de la Diferenciación/genética , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Regulación hacia Arriba/genéticaRESUMEN
BRCA1 germline mutation carriers usually develop ER, PR and HER2 negative breast carcinoma. Somatic BRCA1 mutations are rare in sporadic breast cancers, but other mechanisms could impair BRCA1 functions in these tumors, particularly in triple-negative breast carcinomas (TNBCs). Id4, a helix-loop-helix DNA binding factor, blocks BRCA1 gene transcription in vitro and could downregulate BRCA1 in vivo. We compared Id4 immunoreactivity in 101 TNBCs versus 113 non-TNBCs, and correlated the results with tumor morphology and immunoreactivity for CK5/6, CK14, EGFR, and androgen receptor (AR). Id4 was present in 76 out of 101 (75 %) TNBCs: 40 (40 %) TNBCs displayed Id4 positivity in >50 % of neoplastic cells, 23 (23 %) in 5-50 %, and 13 (13 %) in <5 %. In contrast, only 6 (5 %) of 113 non-TNBCs showed focal Id4 positivity, limited to fewer than 5 % of the tumor (p < 0.0001). Id4 expression significantly associated with high histologic grade (p = 0.0002) and mitotic rate (p = 0.006). Id4 decorated all 12 TNBCs with large central acellular zone of necrosis in our series, with positive staining in 10-90 % of the cells. Id4 signal strongly correlated with cytokeratin CK14 reactivity (p < 0.0001), but not with CK5/6 and EGFR. All apocrine carcinomas in our series were positive for AR and most for EGFR, but they were negative for CK5/6, CK14, and Id4, with only two exceptions. Our results document substantial expression of Id4 in most TNBCs, which could result in functional downregulation of BRCA1 pathways in these tumors.
Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA1/genética , Biomarcadores de Tumor , Regulación hacia Abajo , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Femenino , Humanos , Queratina-14/inmunología , Queratina-14/metabolismo , Queratina-5/inmunología , Queratina-5/metabolismo , Queratina-6/inmunología , Queratina-6/metabolismo , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Receptores Androgénicos/inmunología , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismoRESUMEN
Up until now, the precise mechanism for endostatin's antiangiogenesis action was not known. In a recent report, have taken advantage of gene array and proteomic analysis to map the antiangiogenic pathways turned on by endostatin. This study resolves some of the controversies surrounding endostatin's biology, and provides a new direction to help dissect the molecular pathways involved in endostatin's selective tumor antiangiogenic effects.
Asunto(s)
Endostatinas/metabolismo , Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Receptores Inmunológicos , Inhibidores de la Angiogénesis/farmacología , Antígenos CD36/metabolismo , Perfilación de la Expresión Génica , Integrina alfa5beta1/metabolismo , Fosforilación , Receptores de Lipoproteína/metabolismo , Receptores Depuradores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Angiogenic defects in Id mutant mice inhibit the growth of tumor xenografts, providing a genetic model for antiangiogenic stress. Our work tests the consequences of such stress on progression of more physiological Pten+/- tumors. While tumor growth occurs despite impaired angiogenesis, disruption of vasculature by Id loss causes tumor cells to experience hypoxia and necrosis, the extent of which is tumor dependent. We show that bone-marrow-derived endothelial precursors contribute functionally to neovasculature of some but not all Pten+/- tumors, partially rescuing Id mutant phenotype. We demonstrate that loss of Id1 in tumor endothelial cells results in downregulation of several proangiogenic genes, including alpha6 and beta4 integrins, matrix metalloprotease-2, and fibroblast growth factor receptor-1. Inhibition of these factors phenocopies loss of Id in in vivo angiogenesis assays.
Asunto(s)
Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Represoras , Factores de Transcripción/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Endotelio Vascular/fisiopatología , Femenino , Proteínas de Peces , Proteína 1 Inhibidora de la Diferenciación , Proteínas Inhibidoras de la Diferenciación , Integrina alfa6/metabolismo , Integrina beta4/metabolismo , Ganglios Linfáticos/fisiopatología , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/fisiopatología , Fosfohidrolasa PTEN , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Trombospondina 1/metabolismo , Factores de Transcripción/genética , Trasplante Heterólogo , Neoplasias Uterinas/fisiopatologíaRESUMEN
Hec1 (Highly Expressed in Cancer 1) is one of four proteins of the outer kinetochore Ndc80 complex involved in the dynamic interface between centromeres and spindle microtubules. Its overexpression is seen in a variety of human tumors and correlates with tumor grade and prognosis. We show here that the overexpression of Hec1 in an inducible mouse model results in mitotic checkpoint hyperactivation. As previously observed with overexpression of the Mad2 gene, hyperactivation of the mitotic checkpoint leads to aneuploidy in vitro and is sufficient to generate tumors in vivo that harbor significant levels of aneuploidy. These results underscore the role of chromosomal instability as a result of mitotic checkpoint hyperactivation in the initiation of tumorigenesis.
Asunto(s)
Proteínas de Ciclo Celular/farmacología , Mitosis , Neoplasias/etiología , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Aneuploidia , Animales , Proteínas de Ciclo Celular/administración & dosificación , Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica , Doxiciclina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Cinetocoros , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos , Neoplasias/genética , Proteínas Nucleares/administración & dosificación , Distribución TisularRESUMEN
ID proteins are helix-loop-helix (HLH) transcriptional regulators frequently overexpressed in cancer. ID proteins inhibit basic-HLH transcription factors often blocking differentiation and sustaining proliferation. A small-molecule, AGX51, targets ID proteins for degradation and impairs ocular neovascularization in mouse models. Here we show that AGX51 treatment of cancer cell lines impairs cell growth and viability that results from an increase in reactive oxygen species (ROS) production upon ID degradation. In mouse models, AGX51 treatment suppresses breast cancer colonization in the lung, regresses the growth of paclitaxel-resistant breast tumors when combined with paclitaxel and reduces tumor burden in sporadic colorectal neoplasia. Furthermore, in cells and mice, we fail to observe acquired resistance to AGX51 likely the result of the inability to mutate the binding pocket without loss of ID function and efficient degradation of the ID proteins. Thus, AGX51 is a first-in-class compound that antagonizes ID proteins, shows strong anti-tumor effects and may be further developed for the management of multiple cancers.
RESUMEN
Emerging evidence indicates that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to angiogenesis-mediated growth of certain tumors in mice and human. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. While the contributions of EPCs to neovessel formation in spontaneous and transplanted tumors and to the metastatic transition have been reported to be relatively low, remarkably, specific EPC ablation in vivo has resulted in severe angiogenesis inhibition and impaired primary and metastatic tumor growth. The existence of a BM reservoir of EPCs, and the selective involvement of EPCs in neovascularization, have attracted considerable interest because these cells represent novel target for therapeutic intervention. In addition, EPCs are also being used as pharmacodynamic surrogate markers for monitoring cancer progression, as well as for optimizing efficacy of anti-angiogenic therapies in the clinic. This review will focus primarily on recent advances and emerging concepts in the field of EPC biology and discuss ongoing debates involving the role of EPCs in tumor neovascularization. For detailed information on the in vitro characterization of EPCs contribution to non-tumor pathologies, the reader is directed towards several excellent reviews and publications [F. Bertolini, Y. Shaked, P. Mancuso and R.S. Kerbel, Nat. Rev., Cancer 6 (2006) 835-845. [1]] [J.M. Hill, T. Finkel and A.A. Quyyumi, Vox Sang. 87 Suppl 2 (2004) 31-37. [2]] [A.Y. Khakoo and T. Finkel, Annu. Rev. Med. 56 (2005) 79-101. [3]] [H.G. Kopp, C.A. Ramos and S. Rafii, Curr. Opin. Hematol. 13 (2006) 175-181. [4]; K.K. Hirschi, D.A. Ingram and M.C. Yoder, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 1584-1595. [5]; F. Timmermans, J. Plum, M.C. Yoder, D.A. Ingram, B. Vandekerckhove and J. Case, J. Cell. Mol. Med. 13 (2009) 87-102. [6]] and reviews by Bertolini, Voest and Yoder in this issue.
Asunto(s)
Células Endoteliales/fisiología , Neoplasias/patología , Células Madre/fisiología , Médula Ósea , Proliferación Celular , Predicción , Humanos , Proteína 1 Inhibidora de la Diferenciación/fisiología , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neovascularización PatológicaRESUMEN
Advanced human cancers are invariably aneuploid, in that they harbour cells with abnormal chromosome numbers. However, the molecular defects underlying this trait, and whether they are a cause or a consequence of the malignant phenotype, are not clear. Mutations that disable the retinoblastoma (Rb) pathway are also common in human cancers. These mutations promote tumour development by deregulating the E2F family of transcription factors leading to uncontrolled cell cycle progression. We show that the mitotic checkpoint protein Mad2 is a direct E2F target and, as a consequence, is aberrantly expressed in cells with Rb pathway defects. Concordantly, Mad2 is overexpressed in several tumour types, where it correlates with high E2F activity and poor patient prognosis. Generation of Rb pathway lesions in normal and transformed cells produces aberrant Mad2 expression and mitotic defects leading to aneuploidy, such that elevated Mad2 contributes directly to these defects. These results demonstrate how chromosome instability can arise as a by-product of defects in cell cycle control that compromise the accuracy of mitosis, and suggest a new model to explain the frequent appearance of aneuploidy in human cancer.